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SUMMARY 

Forward cross-validation analyses were used to quantify the changes in BREEDPLAN EBVs 
from single-step genetic evaluations compared to traditional pedigree-based evaluations for Angus, 
Brahman, Hereford, Santa Gertrudis and Wagyu breeds. EBVs were generated from full multi-trait 
evaluations for each breed and compared to EBVs from an evaluation where all the phenotypic 
records were removed from the last four year drops of animals (termed Validation). Results for the 
sub-set of validation animals that were SNP genotyped showed the population-based accuracy of 
single-step EBVs were higher than pedigree-based accuracies for all breeds and traits. However, the 
magnitudes of the accuracy increases differed across breeds and traits, and generally reflected 
differences in the size of the training populations for each trait. The largest increase in accuracy, 
averaged across all traits in a breed, was observed for Angus (24%) and the smallest for Santa 
Gertrudis (5%). Across breeds, the largest increases in accuracy occurred for the growth trait EBVs 
compared to smaller increases for abattoir carcase, female reproduction and NFI EBVs. This study 
has shown the benefits of single-step genomic evaluations, and the opportunity to increase rates of 
genetic progress, through the increased accuracy generated. The study also highlighted breeds and 
traits which could benefit from additional recording to increase accuracies from single-step.  

 
INTRODUCTION 

Inclusion of SNP-based data is now routine in most livestock genetic evaluations worldwide. 
BREEDPLAN has included DNA marker data since 2010 and in 2017 implemented single-step 
SNP-based genomic evaluations (Johnston et al. 2018). Increasing rates of industry genotyping, 
coupled with the development of breed reference populations has resulted in increased accuracy of 
EBVs, especially for genotyped animals (Jeyaruban et al. 2019). Quantifying the benefits from 
single-step evaluations is not straightforward from large evaluations however Legarra and Reverter 
(2018) proposed using forward validation and semi-parametric estimates (called Method LR) as a 
relatively simple method to quantify the changes in accuracy, bias, and dispersion between two 
evaluations. The aim of this study was to use forward cross-validation and the Method LR to assess 
the changes in accuracies of single-step versus pedigree-based evaluations for a range of breeds that 
differ in the numbers of genotyped animals and the size and structure of their genomic reference 
populations. 

 
MATERIAL AND METHODS 

Data. The dataset used in this study included performance, pedigrees and genotypic data extracts 
from each of the five breed’s databases from December 2022. Full BREEDPLAN multi-trait 
evaluations including maternal effects and genetic groups were run for each breed. Single-step 
evaluations were performed according to the procedures of Connors et al. (2017) and Johnston et 
al. (2018). Traits included: birth weight (BW), gestation length (GL), 200d weight (WW), 400d 
weight (YW), 600d weight (FW), cow weight (MCW), bull ultrasound rib fat (BRF), P8 fat (BP8), 
eye muscle area (BEMA), intramuscular fat percent (BIMF), heifer ultrasound rib fat (HRF), P8 fat 
(HP8), eye muscle area (HEMA), intramuscular fat percent (HIMF), days to calving (DC), abattoir 
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carcase weight (CWT), rib fat (CRIB), P8 fat (CP8), eye muscle area (CEMA), intramuscular fat 
(CIMF), marble score (CMS), marble fineness score (CMF), retail beef yield (CMY), shear force 
(CSF), net feed intake-postweaning (NFIP), net feed intake-finishing (NFIF), scrotal circumference 
(SC), heifer age at puberty (AP), flight time (FT) and percent normal sperm (PNS). 

Forward validation. To perform the cross-validation animals were defined as “validation” 
animals or ‘training’ based on their year of birth. Animals born after 2018 (except Wagyu, where 
2019 was a better split in the data of genotyped animals) comprised the validation sub-set. 
BREEDPLAN evaluations were performed using pedigree-based BLUP analyses (PED) and single-
step analyses (S-S). These runs included all phenotypes, with the resulting EBVs for the validation 
subset of animals denoted as 𝒖𝒖�𝑤𝑤. Phenotypes for the validation animals were then removed and the 
analyses repeated, with the resulting EBVs denoted as 𝒖𝒖�𝑝𝑝. The subscripts “𝑤𝑤” and “𝑝𝑝” refer to 
“whole” and “part” analyses respectively, with the part EBVs of validation animals (𝒖𝒖�𝑝𝑝) informed 
by their pedigree and genomic relationships with the training animals, respectively. A series of 
metrics were computed using the Method LR (Legarra and Reverter 2018) to compare EBVs from 
part versus whole subsets from each of the PED and S-S evaluations. A population-based accuracy 
(acc) of the evaluations was computed using the approximation below: 

𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝑎𝑎𝑐𝑐𝑐𝑐�𝒖𝒖�𝑤𝑤,𝒖𝒖�𝑝𝑝�

�𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑲𝑲)�����������  −  𝑲𝑲��𝜎𝜎𝑢𝑢,∞
2

 

where, 𝑲𝑲 is the relationship matrix (i.e. NRM for PED and GRM for S-S) for the validation animals 
with phenotypes for each trait and 𝜎𝜎𝑢𝑢,∞

2  is assumed to be the genetic variance. The dispersion (i.e. 
slope) was estimated by 𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝 = 𝑎𝑎𝑐𝑐𝑐𝑐�𝒖𝒖�𝑤𝑤 ,𝒖𝒖�𝑝𝑝�/𝑐𝑐𝑎𝑎𝑣𝑣(𝒖𝒖�𝑝𝑝) and the bias was estimated as 𝑏𝑏𝑑𝑑𝑎𝑎𝑑𝑑 =
�𝒖𝒖�𝑝𝑝���� − 𝒖𝒖�𝑤𝑤�����. While the validation animals included both genotyped and pedigree-only animals, 
metrics reported in this paper are for genotyped animals only. Bias and dispersion metrics were 
computed but only summary results are reported here. 

 
RESULTS AND DISCUSSION 

Table 1 presents population estimates of accuracies for genotyped validation animals for the five 
breeds across the range of BREEDPLAN EBVs. Results show accuracies from S-S were higher than 
PED across all breeds and all trait EBVs. This demonstrates that the validation animal’s EBVs were 
on average more highly correlated from the S-S evaluation compared to the PED evaluation from 
the part versus whole runs. Across breeds S-S accuracies were generally highest for the growth traits, 
with an extreme value for Brahman birth weight (also evident in PED accuracy) suggesting the 
additive variance assumed is smaller than the true variance or is being influenced by maternal 
effects. 

On average the increase in S-S accuracy was 0.05, 0.12, 0.16, 0.18, 0.23, for Santa Gertrudis, 
Brahman, Hereford, Wagyu and Angus, respectively (Figure 1). For Angus and Hereford the 
increased accuracies were in general agreement with earlier analyses of Jeyaruban et al. (2019) that 
used a subset of these data from previous years. Recently, Moore et al. (2023) presented an 
alternative approach applied to the Brahman data, and while their results were based on different 
edits and data subsets, the changes in accuracies from single-step across the traits were generally in 
agreement but not always, suggesting the different methods are possibly sensitive to assumptions 
and need further scrutiny.  

The magnitude of the increases in accuracies generally reflected the size of the training 
populations. Figure 2 illustrates that pooled across traits and breeds, accuracies observed in 
validation animals tended to increase with the size of the training set. The plots plateau for S-S at 
0.80 accuracy with more than 10,000 animals with records and genotypes in the training dataset 
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compared to about 0.50 for pedigree evaluations of the same size. In general, for traits with greater 
than 5,000 animals in the training populations the S-S accuracies were above 0.60. 

Estimates of dispersion (not shown here) were generally close to the expected value of unity, 
indicating little evidence of under- or over prediction of S-S EBVs. Bias estimates (not shown) were 
mostly small but further analyses are required to compare ungenotyped and genotyped 
contemporaries. 

  
Table 1. Population accuracy estimates for genotyped validation animals from pedigree (PED) 
and Single-step (S-S) BREEDPLAN evaluations for five breeds across all EBVs 
 

EBV* Angus  Brahman  Hereford  Santa Gertrudis  Wagyu 
  PED S-S  PED S-S  PED S-S  PED S-S  PED S-S 
BW 0.44 0.81  0.79 0.99  0.63 0.85  0.33 0.38  0.49 0.77 
WW 0.53 0.81  0.54 0.70  0.57 0.76  0.37 0.41  0.50 0.76 
YW 0.53 0.81  0.43 0.57  0.64 0.83  0.41 0.45  0.53 0.85 
FW 0.54 0.82  0.46 0.61  0.56 0.79  0.41 0.46  0.51 0.81 
MCW 0.52 0.84  0.42 0.64  0.58 0.79  0.50 0.53  . . 
BEMA 0.58 0.81  0.41 0.49  0.54 0.66  0.43 0.52  0.38 0.56 
HEMA 0.58 0.79  0.39 0.48  0.63 0.74  0.50 0.58  0.34 0.55 
BIMF 0.67 0.84  . .  0.65 0.78  0.34 0.39  0.33 0.42 
HIMF 0.71 0.89  . .  0.71 0.85  0.33 0.39  0.35 0.44 
BP8 0.46 0.75  0.35 0.49  0.52 0.70  0.44 0.51  0.33 0.48 
HP8 0.45 0.76  0.43 0.55  0.63 0.81  0.38 0.47  0.36 0.52 
BRF 0.50 0.78  0.34 0.48  0.54 0.70  0.45 0.52  0.34 0.48 
HRF 0.50 0.78  0.50 0.61  0.69 0.87  0.38 0.47  0.35 0.48 
CWT 0.47 0.66  0.35 0.43  0.32 0.55  0.33 0.37  0.52 0.77 
CEMA 0.39 0.69  . .  0.34 0.46  . .  0.33 0.44 
CIMF 0.50 0.73  0.40 0.46  0.35 0.51  0.31 0.34  0.45 0.61 
CMY 0.44 0.60  . .  . .  . .  . . 
CP8 0.35 0.64  0.35 0.47  0.24 0.47  0.35 0.38  0.40 0.61 
CRF 0.39 0.66  0.37 0.43  0.29 0.45  0.38 0.41    
CMF . .  . .  . .  . .  0.27 0.37 
CMS 0.40 0.62  . .  . .  . .  0.53 0.63 
CSF .   0.36 0.42  . .  0.28 0.32  . . 
DTC 0.47 0.54  0.36 0.60  0.25 0.31  0.55 0.67  . . 
AP . .  0.41 0.47  . .     . . 
PNS . .  0.21 0.26  . .  0.26 0.29  . . 
SC 0.44 0.72  0.59 0.76  0.49 0.61  0.40 0.46  . . 
GL 0.42 0.67  0.32 0.33  0.60 0.68  0.24 0.25  0.30 0.41 
FT . .  0.41 0.46  . .  0.51 0.57    
NFIF 0.22 0.40  . .  0.17 0.17  . .  . . 
NFIP 0.24 0.36  . .  . .  . .  . . 

*see text for trait names; “.” indicates trait not recorded or too few validation animals for the breed 
 
CONCLUSIONS 

This study has shown that single-step BREEDPLAN evaluations are delivering increased 
accuracies of EBVs across the full range of EBVs and breeds. This improvement in accuracies allow 
more genetic progress, particularly for economically important traits that are generally low accuracy 
at the time of selection. Improvements in accuracy from single-step will also benefit the commercial 
beef sector through better genetic description across a broader range of EBVs and allow more precise 
matching of genetics to specific production systems and markets. Further increases in accuracies are 
possible from single-step evaluations of particular breeds and traits by increasing the size of their 
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reference populations. 

Figure 1. Average change in accuracy of validation animals across all traits by breed 

Figure 2. Accuracy of validation animals versus size of training populations for all traits and 
breeds for single-step (orange) and pedigree (blue) evaluations. 
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