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SUMMARY 

The New Zealand deer industry has made notable genetic progress in the last decades. Initially 
based around velvet antler and venison, deer are now selected based on several traits including 
carcass composition, reproduction, and disease resistance within DEERSelect, the industry 
performance recording system in New Zealand. Due to its low cost and manageable logistics for 
deer, the genotyping-by-sequencing (GBS) technology was chosen to replace microsatellites for 
parentage assignment and has allowed a national genetic evaluation across flocks since 2015. 
Genomic information, however, is not yet fully exploited as evaluations currently only use a 
traditional pedigree-based, best linear unbiased prediction (BLUP) approach, to estimate the genetic 
merit of an animal. To assess the benefits of using genomic information in the evaluations, here we 
compare BLUP, genomic BLUP (GBLUP) and single-step genomic BLUP (SSGBLUP) evaluations 
for several production traits in the NZ deer industry. Using forward-validation, we estimate the 
prediction accuracy and bias for these three approaches in 19,863 red animals born between 2018 
and 2020. We show that regardless of the approach, GBLUP or SSGBLUP, incorporating genomic 
information explicitly improves prediction accuracy and reduces bias. Across all traits, we estimate 
gains in accuracy of 16% for GBLUP and 18% for SSGBLUP on average for red deer. We therefore 
recommend the incorporation of genomic information in the evaluations performed by DEERSelect 
and propose a computational pipeline to support the medium to long-term growth of this dynamic 
livestock industry in New Zealand. 

 
INTRODUCTION 

The New Zealand deer industry has made substantial genetic progress in the last decades (Ward 
et al. 2016). Initially based around velvet antler and venison, deer are now selected based on several 
traits including carcass composition, reproduction, and disease resistance within DEERSelect, the 
deer industry performance recording system in New Zealand (Gudex et al. 2013; Ward et al. 2016).  

Since 2015, the AgResearch deer genomics program has developed and implemented 
genotyping-by-sequencing (GBS) methods for deer parentage (Dodds et al. 2019; Rowe et al. 2018), 
gender and breed assignment (Bilton et al. 2019). Deer are routinely genotyped by GenomNZ 
(https://www.agresearch.co.nz/genomnz) using these GBS methods (Rowe et al. 2018). Genomic 
information, however, is not yet fully exploited in current evaluations as they only use the theoretical 
relationships between animals contained in the pedigree to estimate their genetic merit (A matrix). 
This approach to generate breeding values (BVS) is also known as best linear unbiased prediction 
(BLUP) approach. In contrast to that, the genomic BLUP (GBLUP) approach uses the realized 
relationships between animals (Genomic Relationship Matrix - GRM) and thus allows a more 
accurate estimation of their breeding values. Under the GBLUP approach, the actual relatedness for 
between animals is estimated using genomic markers (realized relationships).  

The SSGBLUP approach is intermediate between the latter two, as it weights both genomic 
(GRM) and pedigree (A) contributions to construct a unified relationship matrix known as H matrix. 
The SSGBLUP approaches thus requires an extra parameter α (0 ≤ α ≤1) to weight the GRM and A 

https://www.agresearch.co.nz/genomnz
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matrices. The main advantage of the SSGBLUP approach is to allow the direct incorporation of 
animals with either pedigree or genomic information in the genetic evaluation.  

Here we investigate ways to incorporate genomic information in routine deer evaluations of 
genetic merit. We use production traits related to growth, meat and carcass yield, health, and 
reproduction to compare the performance of genomic prediction using pedigree (BLUP), genomic 
BLUP (GBLUP) and single-step genomic (SSGBLUP) relationships among animals.  

 
MATERIALS AND METHODS 

Animals and Phenotypes. We used phenotypes for red animals born between 2018 and 2020. 
Phenotypic data from six production traits related to growth, meat and carcass yield, health, and 
reproduction was retrieved from DEERSelect. Production traits analysed were weaning live weight 
(WWT), 12-month live weight (W12), carbohydrate larval antigen-specific immunoglobulin A 
levels at 10 months of age (CARLA10), ultrasound measured eye muscle area at 10 months of age 
(EMA), velvet weight at 2 years (VW2), and conception date at 2 years (CD2).  Table 1 details the 
number of records per trait and their corresponding summary statistics. 

 
Table 1. Number of records and summary statistics by trait for New Zealand red deer 
 

    n records Mean SD Min. Max. 
WWT 18,649 55 7 22.2 89.4 
W12 15,894 90 8.5 51.4 130.3 
CARLA10 6,962 2.4 1.2 -2.3 6.6 
EMA 6,205 25.9 2.9 12.7 36.3 
VW2 1,031 3.1 1 0.7 8.1 
CD2 2,163 103.7 12.4 73 130 

 
GBS Genotypes. We used genotypic information from 19,863 animals and 55,784 SNPs 

mapped using GBS data. Genomic relationship matrices (GRM) were constructed using the KGD 
software (Dodds et al. 2015). Principal components (PCs) were obtained from the GRM in GCTA 
(Yang et al. 2011). 

Population structure. The deer population in New Zealand is composed of several crosses from 
two species of the genus Cervus: C. elaphus (red deer) and C. canadensis (wapiti deer/elk), which 
have notable phenotypic differences. Given that the inclusion of genetically divergent breeds can 
reduce prediction accuracy in genomic evaluations (Calus et al. 2014; Makgahlela et al. 2013), 
analyses are conducted separately for each breed. Birth herd codes were used as a proxy for breed. 
Only red analyses are presented here. 

Statistical Analyses. Phenotypes were modelled using a univariate genetic model for each trait. 
Genetic models include relevant covariates for each trait, including contemporary group, age of dam, 
birth date deviation, and breed proportions measured with PCs from the GRM (PC1 to PC3).  

Genetic parameters and breeding values were estimated using pedigree (BLUP), genomic BLUP 
(GBLUP) (VanRaden 2008) and single-step genomic BLUP (SSGBLUP) (Misztal et al., 2009) 
relationships among animals in MTG2 (Lee and van der Werf 2016). This software tool was also 
used to construct the H matrix.  In absence of any prior information, we used α=0.5, equal weights 
for pedigree and genomic relationships, to construct H. 

Genomic prediction accuracy. We assessed the prediction quality of the three relationship 
matrices using a forward-validation scheme. This was done by removing the phenotypes of the last 
cohort (target population, animals born in 2020), estimating the genetic models again using the older 
cohorts (training population, animals born 2018 and 2019), and comparing the breeding value 
predictions with actual phenotypes for the last cohort of animals. Prediction quality was assessed 
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using two measures: prediction accuracy and prediction bias. Prediction accuracy (acc) is defined as 
correlation between predicted breeding values and phenotypes adjusted by fixed effects divided by 
the squared root of the heritability (SSGBLUP model). Bias (bias) as the regression’s slope between 
predicted breeding values and phenotypes adjusted by fixed effects.  

 
RESULTS AND DISCUSSION 

Population structure. Figure 1 shows the first two PCs by birth year (A) and birth herd (B). In 
the figure A, we observe that animals are spread out evenly across the plot, suggesting that there is 
little change in the genetic composition of the animals over time. In contrast to that, figure B shows 
that birth herds form clearly defined clusters in specific regions which do not mix with each other. 
We can thus conclude that there is more variation between birth herds than across time. 

 
(A) Admixture by year (B) Admixture by birth herd 

 
 

 
 

Figure 1. Genetic admixture by birth year (A) and birth herd (B) for deer born between 2018-
2020. Principal components (PC) 1 and 2 are shown in the x and y-axis 
 
Table 2. Accuracy and bias of genomic prediction using pedigree (BLUP), genomic (GBLUP) 
and single-step SSGBLUP) approaches for red deer 
 

     BLUP GBLUP SSGBLUP 
  n target 

 
acc bias acc bias acc bias 

WWT 6,476 0.33 0.41 0.34 0.57 0.28 0.87 
W12 5,382 0.36 0.50 0.47 0.65 0.49 0.62 
CARLA10 2,548 0.29 0.46 0.47 0.71 0.46 0.64 
EMA 2,152 0.34 0.72 0.42 0.77 0.45 0.78 
VW2 343 0.40 1.42 0.43 1.02 0.46 1.11 
CD2 733 0.31 1.20 0.22 0.62 0.27 0.78 

 Average 0.34 0.79 0.39 0.72 0.40 0.80 
 

Genomic Prediction accuracy. The prediction accuracy and bias for the six production traits in 
red deer are presented in Table 2. Across all traits the prediction accuracy from BLUP, GBLUP and 
SSGBLUP approaches are 0.34, 0.39 and 0.40. This implies that incorporating genotypic 
information in the genetic evaluation could provide much more accurate breeding values, on average 
16% and 18% more accurate for GBLUP and SSGBLUP, respectively. Similarly, bias is also 
reduced when using genotypic information (SSGBLUP) H, although variation by trait is still present. 
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Our analyses have some caveats. First, for computational easiness we focus only on red animals 
born between 2018 and 2020. This strategy reduces the computational time for the genetic evaluation 
but also limits the number of phenotypic records included for velvet weight (VW2) and conception 
date (CD2) as these are recorded at two years of age. Secondly, this strategy also reduces the number 
of deer with genotypes entering the evaluation. Despite these caveats, the prediction accuracy of the 
breeding values is improved, and the bias is consistently smaller across all traits as shown in the 
validation (Table 2). 

CONCLUSIONS 
We show that incorporating genomic information explicitly, either by using GBLUP or 

SSGBLUP, improves prediction accuracy and reduces bias. Across all traits, we estimate average 
gains in accuracy of 16% for GBLUP and 18% for SSGBLUP for red deer, the breed with the highest 
numbers of phenotypic records. In addition, breeding values that use genotype information are also 
less biased than those based on pedigree alone. We therefore recommend the incorporation of 
genomic information in the genetic evaluations performed by DEERSelect for red deer. Methods for 
joint evaluations for wapiti, red and red x wapiti cross animals are currently under investigation. 
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