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SUMMARY 

Most beef breeding herds globally still use natural mating, and therefore, conception rates are 
influenced by bull fertility. Many indicator traits are captured in the Bull Breeding Soundness 
Evaluation (BBSE). This paper uses a set of BBSE phenotypes subjected to Genome-Wide 
Association Studies (GWAS) to predict a gene co-association network. Gene networks can be used 
to mine the genetic basis of complex traits, thereby deriving a better biological understanding of the 
underlying mechanisms and informing genomic predictions. Here we described how a dataset of 
BBSE traits in a multibreed population resulted in a network of 537 connected genes whose topology 
and prediction will serve as the starting point for future work. 

 
INTRODUCTION 

The standardised Bull Breeding Soundness Examination (BBSE) intends to evaluate bulls' traits 
relevant to fertility (Entwistle and Fordyce 2003). The quantitative traits of BBSE are heritable (0.17 
to 0.57) (Corbet et al. 2013; Porto-Neto et al. 2023) and possibly suitable for improvement via 
genomic selection. Previously, we have performed a multibreed sequence level GWAS (~ 13 million 
SNPs), which includes data from 6,422 beef bulls. As a result, we identified 179440 variants 
associated with one or more of the seven BBSE traits tested (unpublished results). The traits were 
body weight, condition score, scrotal circumference, sheath score, and semen morphology. In an 
effort to take these results beyond simple associations with our phenotypes of interest and explore 
underlying biology, this study utilises an Association Weight Matrix (AWM) (Fortes et al. 2010) 
approach to identify co-associations between SNPs and build a gene network. SNP selection through 
the AWM could highlight genes that potentially explain a key fertility phenotype, giving us insight 
into the genetics of bull fertility. 

 
MATERIALS AND METHODS 

Animals and phenotypes. BBSE records from 6,422 bulls comprising six different breeds were 
included in this study. Two breeds were research herds from the Cooperative Research Centre for 
Beef Genetic Technologies (Beef CRC) consisting of 1,051 Brahman (BRH) and 1,819 Tropical 
Composite bulls (TRC). The remaining four breeds were obtained from industry, which consists of 
1,288 Santa Gertrudis (SGT), 760 Droughtmasters (DMT), 844 Ultra blacks (UBK), and 660 
Belmont Tropical Composite (BTC). Descriptive statistics of BBSE records obtained for these six 
populations are shown in Table 1. Phenotypes include body weight (Weight), body condition score 
(CS), scrotal circumference (SC), sheath score (Sheath), percent normal sperm (PNS), proximal 
droplets (PD) and mid-piece abnormalities (MP). 

Genotypes. Most animals were genotyped at ~ 50K. A reference panel that utilised BeefCRC 
and industry animals that were at higher density (~700K) and sequence level (~25 million) were 
used to impute animals to higher density and, subsequently, to sequence level. The animals used in 
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the reference population was representative of the bulls used in this study (Porto-Neto et al. 2021). 
This was conducted using a phased reference generated by Eagle 2 (v2.4.1) and then imputed using 
Minimac3 for autosomes and Minimac 4 for Chromosome X. Imputation r2 > 0.8, a call rate > 0.9 
and a minor allele frequency > 0.01 were kept for further analysis. After quality control, a total of 
13,398,171 SNPs, including 92,134 SNPs mapped onto the X chromosome. After running a Leave 
One Chromosome Out (LOCO) GWAS in GCTA (Yang et al. 2011), a total of 179,440 variants 
were significant (P < 5 x 10-8) for at least one trait. 19, 337 variants were significant for two or more 
traits. 

 
Table 1. The number of records and descriptive statistics of the observed traits*  
 

 NA MeanB SDC MinD MaxE 

Weight, kg 6014 391.59 98.65 124.00 810.00 

CS, score 5917 2.96 0.37 2.00 4.00 

SC, cm 6235 30.82 4.26 15.50 52.50 

Sheath, score 6417 3.19 1.77 1.00 9.00 

PNS, % 6055 61.76 27.53 0.00 100.00 

PD, % 6052 13.50 19.96 0.00 96.00 

MP, % 6052 11.39 11.04 0.00 83.00 
A Number of records available for a trait. B Mean of a trait. C Standard deviation of a trait. D Minimum 
value of the trait. E Maximum value of the trait. 

 
AWM-PCIT methodology. The AWM was constructed using the procedure described by 

(Fortes et al. 2010). This method applies a series of selection steps to choose relevant SNPs from 
the 179440 significant variants base on our previous GWAS study (Figure 1). Firstly, we only 
considered significant SNPs that mapped to genes expressed in the testis, which were previously 
reported by de Lima et al. (2021). PNS was chosen as the key phenotype for the AWM as sperm 
morphology is an important aspect of bull fertility that is heritable (0.24) and correlated with 
commonly used bull fertility indices (Attia et al. 2016; Butler et al. 2019; Porto-Neto et al. 2023). 
We selected SNPs that were associated with PNS (P < 0.05). If SNPs were not associated with PNS 
but with at least three other traits (P < 0.05), these SNPs were also kept. The final selection step for 
the AWM chose SNPs that map to coding regions or was within 2,500 bp of known genes. SNP-to-
gene mapping was done using the Map2NCBI package (Hulsman Hanna and Riley 2014) in R. SNPs 
were grouped by gene to map one representative SNP per gene. This was achieved by selecting the 
SNP within each gene group associated with the highest number of phenotypes. Next, SNPs within 
each group were chosen using the most significant average p-value across traits. The result is a 
matrix with rows representing genes (I) and columns representing phenotypes (J). Each element (I, 
J) contains the association of the SNP to the phenotype. We applied the partial correlation and 
information theory (PCIT) algorithm described by Reverter and Chan (2008) to the AWM. This 
algorithm assigns zero for non-significant correlations and retains significant correlations to 
establish edges in the network (Reverter and Chan 2008). The PCIT algorithm allows for a less 
stringent threshold (P < 0.05) to be used, because SNPs are highlighted based on a number of 
features and not just it’s association to the phenotype (Reverter and Chan 2008). The correlation 
values can be used as input for Cytoscape (Shannon et al. 2003) to establish gene interactions in the 
gene network analyses. 
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RESULTS AND DISCUSSION 
The gene network constructed using the AWM is shown in Figure 2. The network contains 537 

genes forming two distinct clusters with 279 genes on the left and 237 genes on the right. Among 
these genes, 21 are transcription factors (TF). This network can serve as a starting point for further 
downstream analysis that can serve two aims: biological discovery and genomic prediction.  
For example, biological discovery with the STRING database (Szklarczyk et al. 2020) will perform 
functional enrichment analysis to derive biological information from the gene network. Recent 
efforts have shown that biological data and the discovery of causal variants can positively impact 
genomic prediction (Xiang et al. 2021). Botelho et al. (2021) proposed AWM weighted single step 
genomic best linear unbiased prediction (AWM-WssGBLUP) as a method to derive weights when 
building the genomic relationship matrix (G). However, this method did not significantly increase 
the predictive ability of genomic predictions in their dataset of boar taint compounds. Nonetheless, 
biological information can still be useful in genomic predictions. Tahir et al. (2022) showed that 
slight improvements in predictive accuracy could be attained using biologically informed SNPs in 
heifer fertility traits. The SNPs that underpin the network described here are leads for causal variants 
that could be used to improve predictions of bull fertility traits.   

 

 
Figure 1. AWM SNP selection flow chart 

 

 
Figure 2. Gene network derived from the Association Weight Matrix (AWM) 
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CONCLUSION 
The gene network created using the AWM highlights several genes and TFs associated with bull 

fertility traits. These genes and TFs, together with the significant SNP in our sequence-level GWAS, 
are promising leads to discover causal variants important for bull fertility. This network can be a 
starting point for further downstream analysis, giving insight into important molecular mechanisms 
for bull fertility traits.  
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