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SUMMARY 

Optimum polygenic and genomic weights enhance the accuracy of breeding value estimates in 
single-step genomic evaluations. This study estimated the contribution from marker information to 
total additive genetic variation referred as λ using an extended single-step model in a multi-trait 
variance component estimation based procedure using data for six Australian Angus carcase traits. 
The λ for these traits ranged from 0.54 (for carcass intramuscular fat) to 0.79 (for carcass eye muscle 
area). Heritabilities were similar between the pedigree only and the extended single-step multi-trait 
model when using the total genetic variance, and ranged from 0.37 (for carcass rib fat) to 0.53 (for 
carcass weight), suggesting that the single-step model did not explain more genetic variance than 
pedigree based models. Results suggest that the scalar λ in the current single-step routine evaluation 
could be replaced by an extended single-step model allowing for different proportions of the additive 
genetic co-variance explained by markers for all elements of the genetic co-variance matrix. 
 
INTRODUCTION 

Increasing availability of genomic information requires ongoing modification to incorporate 
genotypes efficiently in routine genetic evaluation of Australian beef cattle. Single-step genomic 
evaluation developed by Legarra et al. (2009) and Christensen and Lund (2010) combines both 
pedigree and genotypes in a unified analysis. This method integrates numerator relationship matrix 
(𝑨𝑨) and genomic relationship matrix (𝑮𝑮) into a single 𝑯𝑯 matrix, depicting co-variance between both 
genotyped and non-genotyped animals in the analysis. An improved 𝑮𝑮 matrix (𝑮𝑮𝒘𝒘) that can be 
obtained as 𝜆𝜆𝑮𝑮 + (1 − 𝜆𝜆)𝑪𝑪 was suggested by Christensen and Lund (2012), where 𝑪𝑪 is often the 
numerator relationship matrix among the genotyped animals, and λ is a non-zero weight with 0 <
𝜆𝜆 < 1. λ is usually referred to as the proportion of additive genetic variance explained by the marker 
effects. For current BREEDPLAN single-step multi-trait breeding value estimation λ is set to a 
scalar value of 0.5, implying that for all genetic co-variances in the model, the same proportion is 
explained by markers.   

Previous studies aimed at estimating λ by a cross-validation grid-search procedure to maximise 
the accuracy of predicted breeding values expressed as �𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢� , 𝑦𝑦) 𝜎𝜎𝑢𝑢�𝜎𝜎𝑦𝑦⁄ � ∗ �1 ℎ2⁄ , with the cross-
validations performed on single trait data sets using a genetic variance 𝐻𝐻𝐻𝐻 (McMillan et al., 2017; 
Zhang et al. 2017). However, the problem with the cross-validation approach is that contradicting 
values for λ in two single-trait analysis are difficult to accommodate when both traits are included 
in a multi-trait evaluation. Further, a multi-trait cross-validation grid-search would have to evaluate 
a high dimensional grid, which makes the approach computationally infeasible.  

It can be shown that a model using 𝑮𝑮𝒘𝒘 = 𝜆𝜆𝑮𝑮 + (1 − 𝜆𝜆)𝑪𝑪 is simply the condensed form of the 
extended single-step model containing two genetic factors, one using 𝑨𝑨⨂𝚺𝚺𝑨𝑨 and the other using 
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𝑯𝑯⨂𝚺𝚺𝑯𝑯 with 𝑮𝑮𝒘𝒘 = 𝑮𝑮 + 𝑰𝑰0.001 where 𝚺𝚺𝑨𝑨 and 𝚺𝚺𝑯𝑯 are co-variance matrices and 𝑰𝑰 is an identity matrix. 
The total genetic variance 𝚺𝚺𝑮𝑮 = 𝚺𝚺𝑯𝑯 + 𝚺𝚺𝑨𝑨 with a scalar λ only being obtainable if 𝚺𝚺𝑯𝑯 ⊘ 𝚺𝚺𝑮𝑮 ≡ 𝒊𝒊𝒊𝒊′𝑘𝑘 
where 𝑘𝑘 is a scalar and 𝒊𝒊 is an identity vector. Therefore, the partitioning of the genetic variance 
implicit in λ can be obtained by variance component estimation using the general model with two 
genetic factors, where the results may not support a scalar λ and in turn may require the use of the 
general model in genetic evaluation. However, the estimation of variance components for such a 
model via restricted maximum likelihood (REML) is challenging due to the mixed model coefficient 
matrix containing large non-zero blocks, and REML algorithms using the phenotypic co-variance 
matrix are severely limited with regard to the number of observations that can be accommodated.  

This study investigated methods to optimally partition the genetic variances in Australian Angus 
carcass data. To overcome REML limitations, Bayesian methods were used. 

 
MATERIALS AND METHODS 

A total of 59,616 pre-corrected records (Graser et al. 2005) for Australian Angus carcass traits 
were analysed consisting of carcass weight (CWT), carcass rib fat (CRF), carcass P8 fat (CP8), 
carcass eye muscle area (CEA), carcass retail beef yield percentage (CMY), and carcass 
intramuscular fat (CIM). Numbers of phenotypes, genotypes, and pedigree information available for 
each trait are given in Table 1. The pedigree consisted of 2.6 million animals, 110,000 of which 
were genotyped with 56,009 markers per genotype. 
 
Table 1. Number of phenotypic records, number of genotyped animals, and descriptive 
statistics for carcass traits, weight (CWT (kg)), rib fat (CRF (mm)), P8 fat (CP8 (mm)), eye 
muscle area (CEA (cm2)), retail beef yield (CMY (%)), and intramuscular fat (CIM (%)) 
 

Trait  Records  Genotyped Mean  Stddev Minimum Maximum 
CWT 16875 3340 422.9 60.2 186.8 636.0 
CRF 5319 1059 15.5 5.1 1.6 36.8 
CP8  14793 3054 19.7 5.6 1.6 42.7 
CEA 7392 839 83.9 9.1 41.8 120.7 
CMY 2140 505 69.0 4.6 55.8 77.9 
CIM 13097 2630 8.8 3.4 1.7 30.9 

 
Models. A multi-trait linear mixed model (model 1) was fitted as follows: 
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where [𝑦𝑦1, . ,𝑦𝑦6] is a vector of phenotypic observations for traits 1 to 6, matrices [𝑋𝑋1, . ,𝑋𝑋6] and 
[𝑍𝑍1, . ,𝑍𝑍6] link fixed effects of contemporary group and random additive genetic effects, respectively 
to their respective observations, and [𝑒𝑒1, . , 𝑒𝑒6] is a vector of residuals. [𝑢𝑢1, . ,𝑢𝑢6]~𝑁𝑁([0, . , 0],𝑨𝑨⨂𝚺𝚺) 
where 𝚺𝚺 is the co-variance matrix between genetic factors and A is the pedigree derived co-variance 
matrix between animals. 

The single-step multi-trait linear model (model 2) was fitted as follows: 
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where [𝑢𝑢1, . ,𝑢𝑢6]~𝑁𝑁([0, . , 0],𝑨𝑨⨂𝚺𝚺𝑨𝑨) is a vector of polygenic effects and 
[𝑔𝑔1, . ,𝑔𝑔6]~𝑁𝑁([0, . , 0],𝑯𝑯⨂𝚺𝚺𝑯𝑯) is a vector of genomic effects. Matrix 𝑯𝑯 contains a genomic relationship 
matrix 𝑮𝑮 = 𝑴𝑴𝑴𝑴′ + 𝑪𝑪, where 𝑴𝑴 is centred and scaled marker genotypes matrix and 𝑪𝑪 is a diagonal 
matrix of small values (e.g. 0.0001) ensuring invertability of 𝑮𝑮. The total additive genetic variance 
(𝚺𝚺𝑮𝑮) is equal to 𝚺𝚺𝑨𝑨 + 𝚺𝚺𝑯𝑯, and when there are no genotyped animals model 2 essentially becomes 
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model 1. Therefore, an underlying assumption about λ is that 𝒖𝒖 and 𝒈𝒈 are vectors of orthogonal 
random effects. 

Variance components based on model 1 and model 2 were estimated using Gibbs sampling. The 
analysis were conducted with model 1 using 𝑨𝑨 and with model 2 using 𝑨𝑨 and 𝑯𝑯, where in both cases 
the blocks of 𝑨𝑨 and 𝑯𝑯 related to the union of all phenotyped individuals were extracted from 𝑨𝑨 and 
𝑯𝑯 built using all animals in the pedigree and all available genotypes. For the pedigree model prior 
variances were calculated from the phenotypic variances. For the extended single-step model prior 
variances were those obtained from the pedigree model, with a prior variance partitioning equal to 
𝚺𝚺𝑯𝑯 = 0.1𝚺𝚺𝑮𝑮 and 𝚺𝚺𝑨𝑨 = 0.9𝚺𝚺𝑮𝑮. However, for both models the prior weight was zero. Variance 
components and genomic weights were obtained by discarding the first 30,000 samples as burn-in 
and averaging the sum of every 100th sample from a total of 200,000 samples.   

 
RESULTS AND DISCUSSION 

The heritabilities for six carcass traits for model 1 which used 𝑨𝑨 as the between animals co-
variance matrix, and for model 2 where the variances were partitioned between the genomic and 
polygenic factor are presented in Table 2. The total heritabilities for six carcass traits in model 2 
ranged from 0.37 for CRF  to 0.53 for CWT , and they were almost identical to those derived from 
model 1 (Table 2).  

The proportion of additive genetic variation explained by markers (λ) is greater for almost all 
carcass traits than the λ assumed in the current BREEDPLAN evaluations of 0.5, and ranged from 
0.54 for CIM to 0.79 for CEA (Table 2). Therefore, future genetic evaluations should allow higher 
and different λ in BREEDPLAN routine genetic evaluation of carcass traits. These results suggest 
that the BREEDPLAN genetic evaluation model would have to allow for two genetic factors where 
the implications for model dimensionality, solver convergence rate, and breeding value accuracy 
must be investigated. 
 
Table 2. Pedigree based heritability (𝒉𝒉𝟐𝟐) when using model 1 and matrix 𝑨𝑨, and polygenic (𝒉𝒉𝑨𝑨𝟐𝟐 ), 
genomic (𝒉𝒉𝑯𝑯𝟐𝟐 ) and total heritability (𝒉𝒉𝑮𝑮𝟐𝟐 ), genomic weights (λ) and phenotypic variances (𝝈𝝈𝒑𝒑𝟐𝟐) 
when using model 2 for 6 Australian Angus carcase traits 
 

Parameter CWT1 CRF2 CP83 CEA4 CMY5 CIM6 
ℎ2 0.51 (0.03)a 0.38 (0.05) 0.45 (0.03) 0.47 (0.04) 0.51 (0.07) 0.46 (0.03) 
ℎ𝐴𝐴2 0.17 (0.03) 0.12 (0.04) 0.13 (0.03) 0.10 (0.04) 0.23 (0.07) 0.22 (0.04) 
ℎ𝐻𝐻2  0.35 (0.02) 0.25 (0.03) 0.34 (0.03) 0.37 (0.03) 0.29 (0.07) 0.25 (0.02) 
ℎ𝐺𝐺2  0.52 (0.03) 0.37 (0.04) 0.47 (0.03) 0.47 (0.04) 0.52 (0.05) 0.47 (0.03) 
λ† 0.67 (0.04) 0.68 (0.08) 0.73 (0.06) 0.79 (0.08) 0.56 (0.13) 0.54 (0.05) 
𝜎𝜎𝑝𝑝2 844.40 (13) 16.80 (0.40) 21.89 (0.36) 46.51 (0.92) 2.72 (0.10) 5.50 (0.09) 

1weight, 2rib fat, 3P8 fat, 4eye muscle area, 5retail beef yield, 6intramuscular fat; astandard deviation from 1700 
samples in parenthesis; †𝜆𝜆 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺𝑯𝑯)/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺𝑮𝑮) 
 

Directions (and values) of between trait total genetic correlations from model 2 were similar to 
those from model 1 (Table 3). However, comparison of trait correlations between polygenic and 
genomic factor in model 2 shows that for many traits this correlation is in the in opposite direction 
(Table 4). One notable example is CEA where positive genetic correlations were observed for 
polygenic factor whereas those correlations were negative in genomic factor (Table 4). Global 
correlations between CEA and fat traits (CRF and CP8) were negative regardless of whether model 
1 or model 2 was used. However, for model 2 genomic correlations remained negative whereas 
polygenic correlations turned positive. The opposite pattern was observed for correlations between 
CEA and CMY, where the global correlation remained positive, but was larger, and the polygenic 
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correlation turned negative. It needs to be confirmed whether these findings have a biological 
foundation or were caused by insufficient variance partitioning due to the low number of genotyped 
and phenotyped animals for CEA and CMY. 
 
Table 3. Genetic correlation (lower triangle) when using model 1 and total genetic correlation 
(upper triangle) when using model 2 for 6 Australian Angus carcass traits 
 

Trait1 CWT CRF CP8 CEA CMY CIM 
CWT  -0.03 (0.02)a -0.12 (0.02) 0.01 (0.02) 0.10 (0.02) 0.04 (0.02) 
CRF -0.02 (0.02)  0.55 (0.01) -0.14 (0.02) -0.43 (0.02) 0.01 (0.02) 
CP8 -0.12 (0.02) 0.55 (0.01)  -0.19 (0.02) -0.25 (0.02) -0.02 (0.02) 
CEA 0.08 (0.02) -0.19 (0.02) -0.23 (0.02)  0.39 (0.01) 0.05 (0.02) 
CMY 0.11 (0.02) -0.54 (0.03) -0.29 (0.02) 0.43 (0.01)  -0.08 (0.02) 
CIM 0.07 (0.02) 0.02 (0.02) -0.07 (0.02) 0.03 (0.02) -0.02 (0.02)  

1CWT, weight; CRF, rib fat; CP8, P8 fat; CEA, eye muscle area; CMY, retail beef yield; CIM, intramuscular 
fat; astandard deviation from 1700 samples in parenthesis 
 
Table 4. Polygenic factor correlation (upper triangle) and genomic factor correlation (lower 
triangle) matrix when using model 2 for 6 Australian Angus carcass traits 
 

Trait1 CWT CRF CP8 CEA CMY CIM 
CWT  0.31(0.02)a -0.13 (0.03) 0.22 (0.02) -0.09 (0.03) 0.33 (0.02) 
CRF -0.20 (0.03)  0.49 (0.01) 0.27 (0.02) -0.50 (0.04) 0.04 (0.02) 
CP8 -0.12 (0.03) 0.57 (0.01)  0.06 (0.02) -0.22 (0.03) -0.15 (0.03) 
CEA -0.07 (0.03) -0.30 (0.03) -0.27 (0.03)  -0.21 (0.03) 0.10 (0.02) 
CMY 0.22 (0.02) -0.40 (0.04) -0.27 (0.03) 0.69 (0.01)  -0.06 (0.03) 
CIM -0.15 (0.03) 0.00 (0.03) 0.05 (0.02) 0.03 (0.02) -0.10 (0.03)  

1CWT, weight; CRF, rib fat; CP8, P8 fat; CEA, eye muscle area; CMY, retail beef yield; CIM, intramuscular 
fat; astandard deviation from 1700 samples in parenthesis 
 
CONCLUSIONS 

The proportion of additive genetic variation explained by markers (λ) ranged from 0.54 to 0.79 
for the six carcass traits in Australian Angus beef cattle. This finding is significant because the 
current BREEDPLAN single-step evaluation uses a single λ for all traits, 0.5. The results of this 
study do not support the use of the same λ for all traits. However, accounting for these findings 
requires a change in the BREEDPLAN model which must be preceded by further investigations into 
computational feasibility and breeding value accuracy.  
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