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SUMMARY 
Fertility in dairy cattle has declined as an unintended consequence of selection for high milk 

yield. The negative genetic correlation between milk yield and fertility is now well-documented, 
however, the underlying biological causes are still uncertain. The objective of this study was to 
examine this problem from a genomic perspective by first identifying the variants that link dairy 
fertility and milk production traits, and then using an archetypal clustering method to group variants 
with similar patterns of effects. Each cluster was finally subjected to over-representation analysis to 
identify the biological processes underpinning variants with similar effects. Nine groups with 
distinct effects on production, fertility and conformation traits were identified. Initial results from 
over-representation analysis suggest that the clusters formed are consistent with prior knowledge 
about the associated genes, but also suggest new areas of interest for further research.  

 
INTRODUCTION 

Fertility in dairy cattle has declined over the last 50 years as an unintended consequence of 
selection for high milk yield. Lactation is obviously contingent on parturition, making fertility a key 
driver of profitability, particularly on pasture-based dairy farms. The ideal cow does not only 
conceive – she does it at the right time, on the first attempt, and achieves and maintains pregnancy 
despite producing 60+ litres of milk per day.  

The exact physiological mechanisms linking fertility and milk production are still uncertain, 
despite significant research investment. Results from observational studies and in vivo 
experimentation have been equivocal – largely because nutrition, health, management interventions 
and environmental factors all combine to confound analysis of herd reproductive performance.  

Advances in genomics allow a direct approach to testing hypotheses. However, from a genetic 
perspective, fertility is a complex trait composed of successive biological events, with phenotypes 
that are difficult to measure. In this study, the use of a genome-wide association study incorporating 
large multi-breed reference population and a subset of variants which have been pre-selected for 
significance gives us significantly more power to identify variants of interest. It also allows us to 
identify variant clusters that have similar effects on multiple traits possibly indicating a common 
physiological pathway. 

This study aims to uncover the physiological mechanisms underlying milk production and 
fertility, which may assist herd managers in uncoupling these traits to breed cattle that are both 
productive and highly fertile. 

 
MATERIALS AND METHODS 

Data preparation. Genotype and phenotype data for a total of 5,123 bulls and 29,081 cows from 
DataGene, Australia were used for this study. This data included a mix of Holstein-Friesians (4,061 
bulls/22,899 cows) and Jerseys (1,062 bulls/6,174 cows). 

Genotypes included a total of 46,771 sequence variants, which were selected from a total of 
17,669,372 imputed variants prepared according to a multi-phase method which includes regression 
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involving FAETH scores, variant clustering and pruning, and Bayesian approaches (Xiang et al. 
2021). Two hundred and forty-seven variants thought to be informative for milk fat and protein 
percentage from an analysis performed by van den Berg et al. (2020) were also included. 

Phenotype data included trait deviations and daughter trait deviations for cows and bulls, which 
were calculated using a model that corrects for fixed effects including herd, season, and year. Twelve 
traits were selected which are thought to have effects on production and/or fertility, including protein 
yield, fat yield, protein percentage, fat percentage, milk yield, fertility, direct survival, stature, 
angularity, bone quality, udder texture and body condition score. 

Single-trait GWAS. Each trait was analysed one at a time in each sex with linear mixed models 
using GCTA (Yang et al. 2011). Results for both genders were then combined using a weighted 
meta-analysis based on a method described in (Xiang et al. 2018). This allowed us to fully utilize 
GWAS summary data and thereby expand the power of our analysis.  

Although most of the initial 46,771 variants were the result of LD pruning in the set of 1.7 million 
variants identified by (Xiang et al. 2021), we found that for known QTL with large effects such as 
DGAT1, some variants remained in high LD. To remove these, further post-processing was 
undertaken using the snp_clumping function within R package bigsnpr (Privé et al. 2018). This 
function is analogous to the –clump function implemented in PLINK 1.9 but has been adapted for 
memory-efficient usage within the R environment. For our study, as we were most interested in the 
relationship between milk production and fertility traits, we used fertility t-values as our ranking 
statistic. This reduced the starting set of 46,771 variants to 15,220 variants. 

Archetype-based clustering. We then clustered the sequence variants according to their pattern 
of effects on the 12 traits of interest. This was done by first ranking the variants in descending order 
according to the magnitude of their effect size on these traits, and then completing iterative pairwise 
comparisons of their cosine similarity. Whenever a variant was identified which had < 0.8 cosine 
similarity with the index variant, it was considered a new archetype. Subsequent variants were 
considered to represent new archetypes only if this held true for all preceding archetypal variants. 

Using this method, we identified 9 archetypal sequence variants with unique patterns of effects 
on the traits of interest. The remaining 15,211 variants were then assigned to the archetype with 
which they had the highest measure of cosine similarity, forming 9 variant clusters. The direction of 
effects was standardised across variants.  

Enrichment analysis. To better understand the underlying biology for each of the 9 clusters, 
pathway analysis was performed on each cluster using the over-representation analysis (ORA) 
function provided by a gene-set analysis toolkit, WebGestalt (Liao et al. 2019).  

 
RESULTS AND DISCUSSION 

It is important to note in Figure 1 that, as the fertility trait is measured by calving interval, positive 
effects represent infertility. With this in mind, we can distinguish 4 broad groups amongst the 9 
variant clusters. One primarily affects fertility (i.e., clusters 3 and 8), one affects production traits 
with a negative effect on fertility (i.e., cluster 9), and one affects production traits without impacting 
fertility (i.e., clusters 1, 5). Another group could be considered to include clusters which have 
varying effects on conformation, particularly in clusters 4 and 8. 

Cluster 1 includes genes such as DGAT, FASN and MGST1, which have all be implicated in fat 
synthesis. The pattern of effects is consistent with this, with fat, fat percentage and protein 
percentage traits in the opposite direction to milk yield and protein. There is little impact on other 
traits. The most represented GO terms reported by ORA include fat cell differentiation, carbohydrate 
derivative biosynthetic process, response to toxic substance, lipid biosynthetic process and 
endocrine system development. 
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Figure 1. Nine clusters exhibiting shared patterns of effect for 15,220 variants on 12 traits 
 

Cluster 2 has strong effects on protein and fat percentage, which is likely due to an antagonistic 
effect on milk volume. Notable genes include RORA, LAMA4 and PROX1. The most represented 
GO terms included cardiovascular system development, tube morphogenesis, regulation of cellular 
response to stress, and cell fate commitment.  

Cluster 3 displays strong effects on fertility, direct survival, and angularity. Notable genes 
include NOG, ASCL1 and GDNF. The most represented GO terms included neuron death, neuron 
development, appendage development, regulation of system process, and regulation of cell 
development.  

Cluster 4 also has strong effects on fertility and direct survival, with some interaction with 
conformation traits and weaker but consistent effects on production traits. Notable genes include 
LRRK2, DHX36 and BMP7. The most represented GO terms included regulation of nervous system 
development, regulation of cell development, regulation of cell projection organisation, regulation 
of secretion, and response to inorganic substance. 

Cluster 5 represents very strong production effects, without impacting conformation or fertility. 
Notable genes include ADCYAP1, EDN1, and TGFBR1. The most represented GO terms included 
carbohydrate derivative transport, multicellular organismal response to stress, circulatory system 
process, anion transport, and response to growth factor. 

Cluster 6 comprises variants with effects on fat, protein and milk yield that do not affect fat and 
protein percentage. Notable genes include BMP4, TP63 and WNT5A. The most represented GO 
terms included negative regulation of developmental process, signal transduction by p53 class 
mediator, cranial skeletal system development, positive regulation of cell proliferation, and 
epithelial cell proliferation. 

Cluster 7 affects protein percentage and not much else. Notable genes include BCL2, IL6 and 
ISL1. The most represented GO terms included peptidyl-threonine modification, peptidyl-serine 
modification, tricarboxylic acid metabolic process, negative regulation of transcription, and 
regulation of ion transport.  

Cluster 8 represents conformation traits, along with body condition score and possibly fertility. 
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Notable genes include BMP7, MEF2C and SYK. The most represented GO terms included 
connective tissue development, cardiovascular system development, appendage development, tube 
morphogenesis, and integrin-mediated signaling pathway. 

Cluster 9 is similar to cluster 2 in that it primarily affects protein and fat percentage. However, 
unlike cluster 2 it also has effects on fertility, direct survival, and stature. Notable genes include 
ARRDC3, LGR4 and CIB1. The most represented GO terms included second-messenger-mediated 
signaling, G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second 
messenger, secretion by cell, cellular component disassembly, and cell-cell adhesion. 

Care must be taken when interpreting these preliminary results, particularly when pathway 
analysis has been performed. Pathway analysis is still a developing area in computational biology, 
with no current consensus as to the best tool, method, or annotation database to utilise. Pathway 
analysis also requires a gene to be linked to each variant, which is a complex problem. Although 
GWAS can identify genetic loci associated with complex traits, the causal gene associated with each 
locus is often difficult to determine. This is because firstly, LD between loci can mask the identity 
of the causal variant and secondly, the causal variants at most associated loci are not coding, instead 
acting through gene regulatory mechanisms which are difficult to determine (Weeks et al. 2020). 
Validation of our results is still ongoing, through the development of new statistical methods and 
the cross-validation of our findings against experimental datasets comprising expression QTL 
results. 

 
CONCLUSIONS 

This study shows that clustering variants by their patterns of effects and combining the results 
with pathway analysis may help to elucidate the underlying genes and biological processes which 
link genetically associated traits.  
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