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SUMMARY 
Imputation to whole-genome sequence data has been successfully exploited in livestock for fine-

mapping causal variants, meta-GWAS and increasing the accuracy of genomic prediction. However, 
imputation of sequence variants from marker panel (SNP chip) genotypes involves several key 
challenges that do not generally cause issues for SNP chip level imputation. Here we consider the 
challenges and potential solutions for issues such as rare variants, sequencing errors, misalignment 
in regions with large segmental duplications and/or copy number variants. 

 
INTRODUCTION 

Imputation of genotypes to sequence generally requires that target animals first have imputed or 
real marker panel (SNP chip) genotypes. Then the missing sequence variants between the markers 
are filled in using a reference set of real sequence genotypes. Imputation algorithms rely on the 
premise that animals sampled from a population will share a mosaic of haplotypes along the 
chromosome in common with one or more animals in the population. Even across breeds there are 
shared haplotypes due to their common ancestral origins. The observed length of the shared 
haplotypes depends on the marker density, local recombination rates, effective population size and 
importantly the level of relationships between the target individuals and the reference set. In 
livestock, it is commonplace to impute genotypes from lower density SNP chips to higher density 
chips. This imputation is highly accurate using a range of software (Calus et al. 2014) and has 
enabled genomic prediction of breeding values to become routine in the dairy, beef and sheep 
industries. 

Imputation to whole-genome sequence from SNP panel genotypes is routinely undertaken for 
livestock research. The use of imputed sequence has been demonstrated to enable fine mapping of 
causal variants (e.g. Pausch et al. 2017), to facilitate meta Genome-Wide Association Studies (e.g. 
Bouwman et al. 2018) as well as increasing the accuracy of genomic prediction (e.g. Brøndum et al. 
2015; Moghaddar et al. 2019; Xiang et al. 2021).  

However, huge challenges remain compared to SNP chip level imputation for several reasons. 
First, 99% of the sequence variants are missing in high density SNP chip genotypes (HD: ~600k 
SNP) and the reference sequence data has higher error rates than SNP chip genotypes. This affects 
the accuracy of determining matching haplotypes between target and reference animals. Second, a 
large proportion of the sequence variants are less common (Minor Allele Frequency, MAF < 0.01) 
or rare compared to those selected for industry SNP chips and therefore may not be in strong linkage 
disequilibrium (LD) with the more common SNP on chips. This leads to inaccuracies for matching 
target to reference haplotypes. Third, it is costly to develop and maintain large representative 
sequence reference sets: a task that in addition to sequencing, requires considerable computational 
resources. Therefore, an attractive solution is for research groups to continue global collaborations 
to ensure that the databases continue to develop and grow by sharing costs/resources for sequence 
processing, storage and access.  

The aim of this paper is to use examples from our own imputed and real sequence data to 
demonstrate the impact of some of the above challenges and briefly discuss potential solutions. 
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MATERIALS AND METHODS 
We imputed sequence data into over 46,000 sheep and over 200,000 cattle using Minimac3 and 

pre-phased with Eagle software following Pausch et al. (2017). The sheep in the target set 
represented a range of breeds and crosses common to the Australian sheep industry, while the target 
cattle were dairy breeds and their crosses (mainly Holstein, Jersey and Australian Reds). Both sheep 
and cattle target populations had been imputed first to HD genotypes (~600k SNP). The sheep 
sequence reference used for imputation included 726 animals from European breeds and crosses in 
SheepGenomesDB Run2 (Daetwyler et al. 2017). The reference cattle sequences were from Bos 
taurus Run 6 and Run 7 of the 1000 Bull Genomes project (Hayes & Daetwyler 2019) and included 
2333 and 3090 animals representing > 50 breeds and crosses. There were several key differences in 
the Run 6 (Daetwyler et al. 2017) and Run 7 pipeline: Run 6 was aligned to the UMD3.1 reference 
genome, while Run 7 used the improved ARS-UCD1.2 reference genome (Rosen et al. 2020). Run7 
used GATK v3.8 for variant calling instead of Samtools (Run 6).  

Prior to imputation, the variants called in the sheep and cattle reference sequences were pre-
filtered to retain only bi-allelic variants (most imputation algorithms do not impute multiallelic 
variants) with minor allele counts of 4 or more (to remove variants that may be sequencing errors or 
so rare they cannot be well imputed). Additional pre-filtering was applied in Run 7 where we 
retained variants with Beagle R2 >0.9 (from the imputation of missing genotypes) and variants in 
GATK Tranche 99.0 or better. We also identified chromosome segments of ≥ 0.5Mb with excessive 
heterozygosity among genotyped individuals: i.e. > 2% of variants with heterozygote frequency > 
0.55 (maximum expected heterozygosity is 0.5 for neutral loci). These segments generally coincided 
with regions of large duplications (>1 kb) that generate alignment errors and false SNP calls, 
therefore variants in these regions with heterozygote frequency >0.5 were removed.  

 
RESULTS AND DISCUSSION 

The pre-imputation filtering of variants in sheep Run 2 and cattle Run 6 reference sequences 
removed up to 25% of all variants called but this increased to 47% in Run 7, largely due to extra 
filters imposed. Table 1 compares the proportion of imputed variants above two Minimac R2 
thresholds because the Minimac R2 statistic is a good proxy for empirical imputation accuracy 
(Bolormaa et al. 2019). The sheep imputation retained a larger number of imputed variants at 
Minimac R2 thresholds >0.4 and >0.8 compared to imputed cattle data. This is potentially due to 
the imputation target sheep having very recent relatives in the reference set compared to the cattle 
where relationships were more distant between the target and reference sets.   

 
Table 1. Numbers of variants (M=Millions) imputed into sheep and cattle 
 

No. of Variants Sheep Run2 Cattle Run 6 Cattle Run 7 

Total Imputed 40 M (77% of total) 34 M (75% of total) 32 M (53% of total) 

Minimac R2 > 0.4 31 M (77% of imputed) 18 M (53% of imputed) 21 M (66% of imputed) 

Minimac R2 > 0.8 22 M (55% of imputed) 14 M (41% of imputed) 19 M (59% of imputed) 
 
Overall, only 40 to 60% of variants had a MinimacR2 >0.8. The main reason for this is due to 

the very high proportion of sequence variants with a MAF <0.01 (e.g. Figure 1) that are difficult to 
impute with accuracy above 0.8 (Pausch et al. 2017). Further, we hypothesise that due to purging 
selection, rare mutations with strong deleterious effects will tend to have arisen relatively recently, 
and therefore will be more difficult to impute accurately compared to rare variants that have been 
segregating in the population longer because they have small or neutral effects. Indeed, we found 
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some evidence of this in both sheep (Bolormaa et al. 2019) and cattle where for example, missense 
and frameshift mutations (potentially damaging protein activity) showed a higher proportion of less 
accurately imputed variants compared to intergenic and intronic variants (Figure 1). In part, we may 
be able to improve the accuracy of imputation for rare variants by strategies such as skim whole 
genome sequencing (Daetwyler et al, these proceedings) but also by increasing the number of 
sequenced animals in the reference sets. An increase in the number of animals in cattle Run 7 may 
have helped increase the number of variants with Minimac R2 >0.8 compared to Run 6 (Table 1). 
However, other factors including the improved ARS-UCD1.2 reference genome map, different 
variant calling software and more stringent filtering of variants prior to imputation may also have 
contributed to the improvement and this will be further evaluated.  

Figure 1. MAF (Minor Allele Frequency) and Minimac R2 distribution in functional categories 
of variants from cattle Run7. Frameshift and missense variants show the highest frequency of 
variants with low imputation R2  
 

Another important factor causing low sequence imputation accuracy is an erroneous calling of 
SNP in the reference sequences, for example, due to alignment errors of short-read sequencing. 
Typically, this more frequently occurs in the many genome-wide regions of up to several Mb long 
that harbour large segmental repeats (each ≥ 5 kb in length) and/or large structural variants such as 
copy number variants (CNV) (Liu et al. 2010). For example, the major histocompatibility complex 
region has many segmental duplications and CNV (>86% synteny between cattle and sheep; Gao et 
al. 2010) and across this region the mean empirical accuracy within segments of 1 Mb length drops 
well below 0.8 in both sheep and cattle (Pausch et al. 2017; Bolormaa et al. 2019). In these regions, 
we typically observe excessive heterozygosity among reference sequence variants (i.e. 
heterozygosity >0.5) (Fig 2). Thus, in Run 7, prior to imputation we filtered out variants with 
heterozygosity >0.5 in these regions under the assumption that these are false SNP calls and may 
decrease the imputation accuracy of surrounding variants. As a result, on Chr X the Run 7 pre-
imputation filtered variant set included only half the number of variants compared to Run 6 but the 
number of imputed variants in Run 7 with R2 >0.8 was almost double that of Run 6. Although 
stringent pre-filtering may be helpful, the low imputation accuracy of these regions (covering >3% 
of the genome) cannot be fully addressed with the current sequence reference sets because the short 
sequence reads (~150bp) cannot be accurately aligned, even though the reference genome map may 
be very accurate. A potential solution is to develop a reference resource where animals are sequenced 
using long-read technology as well as improved methods to impute large structural variants. 
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Figure 2. Frequency of heterozygous genotypes for real sequence variants on Chr X (non-
pseudo autosomal region) and Chr 27. The data was derived from 2470 bulls sequenced to > 
10x average read depth). Banded regions of excessive heterozygosity (>0 on Chr X and >0.5 
on Chr27) coincide with large segmental repeats and copy number variants. On Chr X in 
addition to bands of high heterozygosity, we also observe ubiquitous random errors across the 
genome: i.e. these were bull X chromosome sequences that should be haploid, with 
“homozygous” genotypes 
 
CONCLUSIONS 

Although imputed sequence has already advanced livestock genomics research there remain 
considerable challenges: including rare variant imputation and limitations of short-read sequencing. 
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