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SUMMARY  
Rapid, on-farm genotyping may be an alternative to SNP chip genotyping for genomic selection 

in certain agriculture industries. This study aimed to assess the accuracy of genomic breeding values, 
estimated from simulated Oxford Nanopore derived genotypes. Oxford Nanopore Technologies’ 
(ONT) single nucleotide sequencing and genotyping accuracy was calculated from real sequencing 
runs of cattle DNA, and used to alter 50K SNP array genotypes in a population of 868 Brahman 
heifers. Genomic breeding values for age of first corpus luteum (an indicator of age of puberty, were 
estimated from the simulated ONT genotypes. The accuracies were compared to accuracies 
calculated using the original SNP array genotypes. Simulated ONT genotypes representing as little 
as 4 X sequencing coverage were able to generate accuracies not statistically different to SNP chip 
genotype accuracies.  
 
INTRODUCTION 

Genomic selection (GS) first described by Meuwissen et al. (2001), is a technique widely used 
in agriculture, which uses genomic information to predict the genomic estimated breeding value 
(GEBV) of an individual for key traits. Typically, single nucleotide polymorphism (SNP) arrays are 
used to cost effectively genotype tens-of-thousands of SNPs, spread evenly across the genome, for 
genomic selection. Given a sufficiently large reference population of genotype and phenotype data, 
the GEBV can be accurately predicted from the SNP genotypes.  

Turnaround time has limited the use of SNP genotyping and GS in Australia’s northern beef 
industry, where cattle are often only handled once a year. With Queensland, the Northern Territory 
and Western Australia accounting for 62% of Australia’s national beef herd, the difficulty of 
adopting GS in northern Australia represents a significant loss of potential productivity. We 
previously proposed a solution to this problem, namely crush-side genotyping (Lamb et al. 2020). 
Crush-side genotyping describes the use of ONT’s MinION sequencer to rapidly, genotype cattle 
on-farm as they pass through the crush. A major limitation to the technology, is its high error rate. 
Improvements in flow cell chemistry and base calling algorithms has seen the error rate steadily 
decrease in recent years. However, the current error rate (between 5-8%) is still significantly higher 
than that of SNP array genotyping. The objective of this study was to ascertain the effect of ONT 
sequencing errors on the accuracy of genomic estimated breeding values in Brahman cattle. 

 
MATERIALS AND METHODS  

Ethics. All analysis was performed using phenotypes and DNA samples previously collected 
with approval by the J.M. Rendel Laboratory Animal Experimental Ethics Committee (CSIRO, 
Queensland) as approvals TBC107 (1999 to 2009) and RH225-06 (2006 to 2010).  

Nanopore Sequencing Error Rates. To determine ONT sequence error rates, ONT sequence 
data (approximately 8 X coverage) from a Brahman cow sequenced on MinION R9 flow cells was 
aligned against the Brahman genome (assembled from data from the same animal ; Ross 2019) using 
minimap2 (Li 2018) with the default settings for ONT alignment. Samtools mpileup (version 1.2, Li 
et al. 2009) was used to create a genome wide mpileup of the reads aligned to the reference genome. 
A maximum read depth of 50 was used to avoid chimeric repeats or ambiguously aligned regions of 



Contributed paper 

196 

the genome. The number of single nucleotide mismatches for each locus across the genome was 
calculated from the mpileup using R. The error rates were reported as percentages of mismatches 
for each nucleic acid, given the total number of observations of nucleotides at all reference sites of 
a particular nucleic acid. For example, adenosine-guanine errors are the number of Guanine 
mismatches divided by all observations at reference adenosine sites.  

Nanopore Genotyping Error Rates. A subset of reads, representing 4 X, 6 X, 8 X, 10 X and 
18 X coverage from a second Brahman cow sequenced on the MinION, were then aligned using 
Minimap2 to the Bos taurus reference genome. Reference assembly UMD 3.1.1 was used to ensure 
reference loci and strand direction matched between sequencing and SNP chip genotypes. Samtools 
and BCFtools were used with a probability threshold (P value) of 1 for SNP discovery and a phred 
scaled base accuracy threshold (Q score) of 7, to genotype loci on the BovineSNP50 BeadChip 
(Illumina, San Diego, CA). Three methods (variable allele count, set ratio and minimum allele count) 
for assigning genotypes from the sequence were examined.  The variable allele count method 
grouped loci by total coverage, and used a separate minimum allele count for each group to verify a 
genotype (Figure 1). This method was hypothesised to better distinguish between sequencing noise 
and heterozygous genotypes at higher coverages. The set ratio method called a particular observation 
as a likely true genotype if the allele was observed in greater than 10% of total observations at that 
loci. Finally, the minimum allele count method called a true genotype if a particular allele was 
observed more than twice no matter the total coverage. Any loci with more than two different alleles 
observed were considered incorrect genotype calls.  All genotypes were then compared to the SNP 
chip genotypes to calculate genotyping accuracy, as well as the percentage of missing calls (loci 
with less than 2X coverage).   

Figure 1. Genotyping method. Three different SNP genotyping methods were used to call 
variable loci  
 

Simulating Nanopore Genotypes and Genomic Breeding Value Prediction. The cattle used 
in this experiment represent a subset of the Northern Breeding Project population, established by the 
Cooperative Research Centre for Beef Genetic Technologies. Phenotypes and management history 
for this herd have been extensively documented (Johnston et al. 2009; Engle et al. 2019). Records 
from a subset of 868 Brahman heifers was taken, including management history and age of first 
corpus luteum (AGECL), as determined using ultrasound scanning. The 868 heifers were also 
genotyped using the BovineSNP50 BeadChip (Illumina, San Diego, CA; Hawken et al. 2012).  

Herd of origin, management cohort and birth month were concatenated into a single factor: 
contemporary group, which was modelled as a fixed effect (Engle et al. 2019). As only a Brahman 
subset was used in this study Bos indicus content was excluded as a covariate.  
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Genomic best linear unbiased prediction (GBLUP) was used to calculate GEBVs for AGECL 
using the univariate model:   

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝑒𝑒 
Where 𝑦𝑦  is the vector of phenotypes, 𝑋𝑋 is a design matrix allocating phenotypes to fixed effects, 

𝐵𝐵 is a vector of the fixed effect contemporary group, 𝑍𝑍 is a matrix of SNP genotypes and 𝑢𝑢 is a 
vector of additive SNP effects.  

The genotyping error rate for each coverage was used to randomly select a number of SNP 
genotypes in Z to alter. The calculated Nanopore sequencing error rate was then used to simulate 
errors at these loci consistent with the Nanopore error profile. The percentage of missing genotypes 
was also used to introduce missing SNPs.   

To calculate the GEBV accuracy for AGECL 5-fold cross validation was used, with each 
validation population representing 20% of the total population (n = 868). Validation animals were 
included in the G matrix but coded with missing phenotypes. The package MTG2 (Lee and van der 
Werf 2016) was used for the predictions and the accuracy was calculated using 𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑟𝑟(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟)/√ℎ2  where ℎ2 = 0.55. The 95% confidence interval was used to compare 
accuracies across the different simulations.  

Two scenarios were simulated when calculating the accuracy of the GEBVs. The first simulation 
represented a scenario where, all animals, both reference and validation populations, were genotyped 
using ONT. This was simulated by simulating ONT errors in all animals. The second simulation 
represented, the more realistic situation where the reference population was SNP chip genotyped, 
while the validation population was genotyped using ONT. This was simulated by inducing errors 
into only animals in the validation population.  
 
RESULTS AND DISCUSSION  

Cytosine and thymine were found to have the lowest sequencing accuracies with 0.84% and 
0.83% of bases at cytosine and thymine loci being inaccurately sequenced. The sequencing error 
rate revealed that for each nucleotide there was a single nucleic acid which was significantly more 
likely to be incorrectly called than the other nucleic acids (Table 1). For example, errors at adenosine 
loci were three time more likely to be called as  guanine than either cytosine or thymine.  

 
Table 1. Nanopore sequencing error rates. The distribution of substitution errors observed 
in Nanopore sequencing data mapped to the reference genome built from the same animal  

  
Reference Nucleotide1   

A C T G 

Alternate  
Nucleotide2 

A NA 18.03% 68.74% 16.34% 
C 17.85% NA 13.13% 65.83% 
G 65.70% 13.27% NA 17.83% 
T 16.46% 68.70% 18.13% NA 

1 The observed nucleotide in the reference genome 

2 The nucleotide observed in the mapped Nanopore reads 

 
The minimum allele count method performed best at high coverages while the set ratio method 

had better genotype calling accuracies at lower coverages. Despite this the variable allele count 
method still outperformed the other two methods across all coverages (Table 2). At 18 X coverage 
the maximum genotyping accuracy achieved was 93.89%, in order to further increase the genotyping 
accuracy methods to disseminate between systematic sequencing errors, such as methylation, may 
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still be required. Strand bias for example, could be used to filter out methylation signals to increase 
the accuracy of genotyping.  

 
Table 2. Nanopore genotyping accuracies and percentage of missing genotypes for various  
coverages  
 

 

 
The genotyping errors observed (Table 2) also supported the ratios of nucleotide sequencing 

errors (Table 1), for example, at homozygous adenosine loci (AA) for 10 X coverage, 95.5% of loci 
were called correctly as AA or TT (the reverse compliment), while 3.3% of loci were called 
incorrectly as AG or GA. The other 12 genotype combinations shared the remaining 1.2% of AA 
loci evenly. This supports the earlier findings that A-G errors are more than three times more 
common in Nanopore sequencing than A-C or A-T. This pattern was observed in the results across 
all genotype combinations and could be leveraged to further increase the accuracy of Nanopore 
genotyping by incorporating a more stringent threshold for calling a genotype which corresponds to 
the most error prone nucleic acid given the reference loci. Using the AA example above, this would 
mean increasing the threshold for a guanine genotype call at an adenosine reference locus to decrease 
incorrect AG/GA genotype calls.  

The GEBV accuracy of AGECL from the SNP chip genotypes was 0.39 ± 0.03 which is not 
statistically different to the accuracy reported by Engle et al. (2019), although removing tropical 
composites from the herd (effectively decreasing the reference population by 1,000 animals) likely 
describes the difference in average accuracy. At coverage as low as 4 X, there was no difference 
between the SNP chip accuracy and the simulated Nanopore genotype accuracies (Figure 2). 
Another study using Nanopore sequence data to predict genomic breeding values in cattle for three 
other traits: body condition score, hip height and body weight also reported accurate genomic 
predictions were possible from 4 X sequencing coverage without imputation (Lamb et al. 2021). 
This demonstrates accurate genomic prediction from Nanopore data is possible for a range of 
desirable traits.  

A difference between the 95% confidence interval in the two different genotyping scenarios 
(reference and validation versus validation only) can be seen at 4 X coverage. However, this 
difference appears to decrease at higher coverages, likely due to the overall increase in genotyping 
accuracy.   

Coverage 
 4 6 8 10 18 

Percentage of loci not called1 41.2% 9.5% 4.4% 4.1% 0.6% 

Accuracy (Variable allele count)2 84.5% 87.4% 89.7% 91.4% 93.9% 
Accuracy (Minimum allele count)3 66.9% 74.8% 81.5% 86.8% 93.7% 
Accuracy (Set ratio)4 84.4% 87.1% 89.2% 90.3% 93.0% 
1 Loci which did not meet the minimum depth criteria (>2 reads) for genotyping 
2 Variable SNP calling criteria were used based on the sequencing depth at each loci (See Figure 1) 
3 Alleles were called as present if observed more than 2 times 
4 Alleles were called as present if they comprised more than 10% of observed alleles at that locus 
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Figure 2: GEBV accuracies for AGECL calculated from 33k genotyped loci. Genotypes were 
either directly observed in the SNP array data or had the error profile observed in SNP calling 
from ONT data simulated in the dataset. ONT errors were either simulated in both the 
reference and validation population or only in the validation population to represent two 
different sequencing scenarios 
 
CONCLUSIONS  

Here, we have demonstrated genotyping accuracies as high as 85% are achievable with just over 
4 X Nanopore sequencing coverage. Using a SNP chip genotyped reference population, simulated 
Nanopore genotypes generated GEBV accuracies that were not significantly different (P > 0.05) 
from accuracies achieved using entirely SNP chip genotypes. This suggests ONT genotyping at low 
coverages can provide comparable GEBV accuracies to traditional SNP chip genotyping. 
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