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SUMMARY 
Rumen microbial profiles have been shown to be accurate predictors of methane emissions in a 

variety of species, however, it can be very costly and slow to generate a dataset with a sufficient 
number of individuals measured for methane who also have had rumen samples collected and 
processed into rumen microbial profiles for these benefits to be applied in industry. We evaluated 
the potential of combining datasets from New Zealand and Australian sheep to improve our ability 
to accurately predict methane emissions in Australian sheep. Prediction of Australian sheep methane 
emissions using rumen microbial profiles and phenotypes from New Zealand was possible, however, 
it was important to closely match the diets the sheep were fed to have confidence in the predictions. 
Prediction accuracies of Australian sheep methane emissions were higher when training on data 
collected on Australian sheep than training on New Zealand sheep; however augmentation of New 
Zealand data collected on a similar diet enabled more complex models to be run and an improvement 
in prediction accuracy. 

 
INTRODUCTION 

The rumen microbiome has been shown to play an important role methane production and feed 
efficiency and improve prediction accuracy in these traits (Hess et al. Submitted-b). However, large 
sample numbers are typically required for accurate trait prediction. Over 3,000 New Zealand sheep 
rumen microbial profiles have been generated with associated methane emission phenotypes, 
representing a variety of breed compositions, ages and diets (Hess et al. Submitted-a). Robinson et 
al. (2020) describe a study in over 500 Australian merino sheep that have been measured for methane 
emissions with rumen samples collected during the study. This study predicted methane emissions 
in Australian merino sheep under two scenarios: 1) when Australian sheep had no methane data 
collected and models were trained using the New Zealand dataset, and 2) when some Australian 
sheep had methane data collected and added to the New Zealand training dataset. The models used 
in our study utilized genomic information, rumen microbial profiles or both. 

 
MATERIALS AND METHODS 

Australian Microbiomes. Rumen samples were collected from 502 Information Nucleus Flock 
follower ewes on a chaffed lucerne and cereal hay diet at 1.5-1.6 times maintenance (Robinson et 
al. 2020). Restriction Enzyme-Reduced Representation Sequencing (Hess et al. 2020) was used to 
generate Reference Free Rumen Microbial Profiles, as described in Hess et al. (Submitted-a).  

New Zealand Microbiomes. Reference Free Rumen Microbial Profiles were generated on 3,019 
rumen samples from 1,200 dual purpose composite ewes (Hess et al. Submitted-a; Hess et al. 
Submitted-b). Rumen Microbial Profiles were separated into 3 groups based on diet (all fed ad lib) 
and age: lamb on ryegrass-based pasture/grass (GL, n = 1051), adult on ryegrass-based pasture/grass 
(GA, n = 1010), and lambs on a lucerne pellet diet (LL, n = 958).  

Methane Phenotypes. Australian sheep had methane phenotypes collected in Respiration and 
Portable Accumulation Chambers (Robinson et al. 2020) during the same experiment in which 
rumen samples were collected. Methane emission phenotypes for the Australian sheep used in this 
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study were the genetic plus permanent environmental effects for respiration chamber measurements 
based on the model without covariates for liveweight and feed intake of Robinson et al. (2020) 

New Zealand methane phenotypes were the methane emission phenotypes from Portable 
Accumulation Chambers, adjusted for the fixed effects of birth rear rank, age of dam and birth date 
deviation (Hess et al. Submitted-b). Adjusted methane phenotypes were normalized within group, 
such that each group had a mean of zero and standard deviation of one to account for differences in 
measurement type (respiration chamber vs portable accumulation chamber), differences in methane 
emissions due to effects such as diet and age, and differences in the methane yield models. 

Genotypes. High density genotypes were available on all New Zealand sheep and 322 of the 
Australian sheep. Sheep were genotyped on a variety of SNP chips, then imputed to a high density 
set of SNPs separately within each country. After imputation, the two datasets were combined and 
SNPs that were segregating in both populations (471,596 SNPs) were used to generate a genomic 
relationship matrix (GRM) using the first method of Van Raden (2008). 

Models. Three models were run in ASReml v 4.1 (Gilmour et al. 2015), which explained 
variation in methane phenotype using genotypes, Microbial Profiles or both: 

y = µ + G + e;  
y = µ + M + e; 

y = µ + G + M + e 
where y is the adjusted methane phenotype; µ is the mean; G is the random animal genetic effect 
with relationships between animals represented by the GRM described above; M is the random 
microbial effect with relationships between samples represented by the cohort-adjusted microbial 
relationship matrix, calculated as described in Hess et al. (2020); and e is the residual.  

The above models were trained using GL, GA, LL or all NZ samples, and used to predict 
breeding values (BV) and microbial values (MV) in the Australian dataset. For models including 
both G and M, the BV and MV were summed to get the combined value (GMV). Accuracies were 
estimated as the correlation between the phenotype and the BV, MV or GMV. The accuracy of the 
microbial values were calculated using all Australian samples or just the samples associated with 
genotyped animals, and models containing G were only run for animals with genotype information 
available. Accuracies were estimated for each cohort separately and the standard errors of the 
accuracies estimated as the standard deviation across all cohorts. There were 10 validation cohorts 
with 50 ± 26 Australian sheep in the full dataset and 5 of these cohorts had 64 ± 29 genotyped sheep. 

The three models above were also trained using Australian samples excluding the cohort that 
was being predicted, as well as these samples augmented with the LL or all NZ samples. Microbial 
relationship matrices used for each model were generated using tags that were present in all groups 
found in either the training or prediction set for that model. There were 79,328 tags present in both 
GA and AUS groups, 69,120 tags present in both GL and AUS groups, 39,502 tags present in both 
LL and AUS groups, 29,456 tags present in all groups (GA, GL, LL and AUS), and 150,687 tags 
present in the AUS group. 
 
RESULTS AND DISCUSSION 

Across-country prediction. Our first analysis aimed to use various rumen microbial profiles 
from New Zealand sheep to predict methane emissions in Australian sheep. Microbial value 
estimates for either all Australian samples or samples associated with a genotyped animal were poor 
and tended to be negative when New Zealand samples were used as the training set, with the 
exception of the samples from lambs fed lucerne pellets (Table 1). The highest accuracy (0.23) was 
from BV estimated using the full NZ dataset and a model fitting both genomic and microbial effects. 
This model contains the most information, with up to three methane phenotypes collected on each 
individual (one each in GL, GA and LL), compared to one for each of the other groups.  

Models trained on the LL data had low but positive accuracies (0.09-0.13) and the lowest 
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standard errors (Table 1). Most training individuals were represented in all three NZ groups (GA, 
GL and LL), so the difference in BV accuracies from the model just fitting genomics is largely 
driven by differences in the methane phenotype. The diet fed to the Australian sheep (chaffed lucerne 
and cereal hay) is more similar to the lucerne pellet diet of the LL group than the ryegrass-based 
pasture of the other two New Zealand groups, therefore it is likely the drivers of methane emissions 
in these Australian sheep are most similar to those in the New Zealand LL group. 

The model fitting both genomic and microbial effects and trained on the LL dataset showed the 
highest GMV accuracy, but this was no higher than the accuracy of the BV in the model just fitting 
genomic effects with the same training data (Table 1), suggesting that incorporating microbial 
information doesn’t always improve accuracy beyond just fitting genotypes even when the microbial 
profiles had some predictive ability (e.g. LL). For the model fitting genomic and microbial effects 
and trained on the other NZ datasets (GL, GA and all NZ), there is some evidence that including the 
microbial component into the model can improve BV accuracy (0.08-0.23) compared to a model 
fitting only the genetic effect (-0.01-0.17). 
 
Table 1. Accuracy of predicting Australian methane emissions using Genotypes and/or 
Microbial Profiles from New Zealand sheep 
 

Training 
set 

All AUS Genotyped AUS 

MV BV MV 
GRM+MRM 

BV MV GMV 

GL -0.10 ± 0.14 -0.01 ± 0.18 -0.12 ± 0.09 0.08 ± 0.17 -0.12 ± 0.10 -0.11 ± 0.09 

GA -0.20 ± 0.14 0.04 ± 0.15 -0.22 ± 0.11 0.21 ± 0.21 -0.23 ± 0.11 -0.20 ± 0.11 

LL 0.13 ± 0.08 0.13 ± 0.09 0.09 ± 0.07 0.12 ± 0.12 0.12 ± 0.08 0.13 ± 0.08 

NZ -0.02 ± 0.12 0.17 ± 0.14 -0.06 ± 0.04 0.23 ± 0.16 -0.01 ± 0.06 0.01 ± 0.06 
All AUS = Genotyped and non-genotyped Australian sheep, Genotyped AUS = genotyped subset of All AUS  
GL = Grass lamb, GA = Grass adult, LL = Lucerne pellet lamb, NZ = All NZ samples (GL + GA + LL) 
MV = Microbial value, BV = Breeding value, GMV = Genetic plus Microbial value 
 

Incorporating data from other countries. Our second analysis aimed to evaluate whether 
including data from another country can improve prediction accuracy. All accuracies were higher 
when incorporating Australian data into the training set (Table 2) compared to training on different 
combinations of the New Zealand dataset (Table 1). BV and MV accuracies were high when using 
the training set of Australian samples despite the smaller size (Table 2). The highest accuracies were 
observed for GMV using the AUS+LL training set, followed by the MV estimated for genotyped 
animals when training on just the Australian dataset.  

BV accuracy was not significantly impacted by adding LL or all NZ data to the Australian dataset 
(Table 2). This is likely driven by the different breed compositions between the two countries, 
leading to genomic relationships that were mostly negative between animals from NZ and Australia 
(Mean = -0.05; Range = -0.09 to 0.09); while those within Australia were mostly positive (Mean = 
0.19; Range = -0.03 to 0.73). 

The model fitting both genomic and microbial effects gave higher accuracies than the models 
fitting just genomic or just microbial relationships for the models trained on AUS+LL and AUS+NZ 
data (Table 2). The model fitting both genomic and microbial effects is more complex than the other 
two models used in our study, this led to singularity issues when used on the Australian dataset, 
likely driven by the smaller training set of 322 genotyped animals. Augmentation of the Australian 
dataset with New Zealand samples allows a more complicated model to successfully run and 
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produces a higher prediction accuracy than using a model that just fits genomic or microbial effects. 
 

Table 2. Accuracy of predicting Australian methane emissions using Genotypes and/or 
Microbial Profiles from New Zealand and Australian sheep 
 

Training 
set 

All AUS Genotyped AUS 

MV BV MV 
GRM+MRM 

BV MV GMV 

AUS 0.54 ± 0.12 0.45 ± 0.26 0.57 ± 0.16 Singularities 

AUS+LL 0.47 ± 0.13 0.46 ± 0.24 0.49 ± 0.16 0.44 ± 0.25 0.48 ± 0.15 0.60 ± 0.17 

AUS+NZ 0.40 ± 0.14 0.44 ± 0.25 0.39 ± 0.17 0.43 ± 0.25 0.37 ± 0.15 0.53 ± 0.15 
All AUS = Genotyped and non-genotyped Australian sheep, Genotyped AUS = genotyped subset of All AUS  
AUS = Australian Samples, AUS+LL = Australian and Lucerne Lamb samples, AUS+NZ = AUS and All NZ 
samples; MV = Microbial value, BV = Breeding value, GMV = Genetic plus Microbial value 

 
Factors influencing these results. Several factors will be influencing these results and their 

application to other datasets. The design of the Australian and New Zealand datasets were different 
in terms of sheep breed, the method for measuring methane (respiration chambers vs portable 
accumulation chambers), diet the sheep were on, and slightly different methods of rumen sample 
processing. Differences in rumen microbial profiles between New Zealand and Australian datasets 
were observed in Hess et al. (Submitted-a). These differences are likely largely driven by 
environmental factors, such as diet, but could also be partially due to differences in sample 
preparation. Cohort-adjusted rumen microbial profiles, as were used in this study, did not show the 
same differences between New Zealand and Australian samples (Hess et al. Submitted-a). 

 
CONCLUSIONS 

This study shows that prediction of methane emissions across country using microbial profiles 
is possible even when genetic linkages are not strong, however, care needs to be taken in matching 
the diets as closely as possible to have some confidence in the predictions. Prediction accuracies of 
Australian sheep methane emissions were higher when training on data collected on Australian 
sheep than training on New Zealand sheep. Importantly, augmentation of the Australian dataset with 
data collected on New Zealand sheep that were on a similar diet enabled more complex models to 
be run and an improvement in prediction accuracy. 
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