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SUMMARY 

The Neogen GGP Ovine 50k chip contains approximately 5000 predictive Single-nucleotide 
polymorphisms (SNPs) that were identified by the Sheep CRC based on their relationship with 
carcase traits from genome wide association studies. These SNPs have been used in routine 
MERINOSELECT and LAMBPLAN analyses, equally-weighted with all other SNPs in a single 
genomic relationship matrix (GRM). This study aimed to examine the impact of fitting all SNPs in 
one GRM or fitting two GRMs, one with selected predictive SNPs and one with random SNPs, in 
conjunction with a numerator relationship matrix. Phenotypes on terminal sire breed cross resource 
flock animals recorded for five carcase and eating quality traits were used for bivariate variance 
component estimation. Variance components estimates were obtained for models containing only a 
numerator relationship matrix (NRM), NRM plus a GRM containing only non-selected SNPs, an 
NRM plus two GRMs containing non-selected and selected SNPs and an NRM plus one GRM 
containing all SNPs. Log-likelihoods were significantly higher in the models containing two GRMs 
for all trait pairs. Slightly higher average heritabilities were estimated from the model where the 
GRM contained all SNPs, except for intramuscular fat and shear force, where the GRM without the 
predictive SNPs resulted in higher heritabilities. The proportion of genetic variance explained by 
the genomic relationship matrices (𝜆𝜆) was estimated to be between 0.59 and 0.86. In terms of the 
genetic correlations between traits, for many trait-pairs the correlations were similar between the 
random effects fitted, but for two trait-pairs large differences were observed between the genetic 
correlations. 

 
INTRODUCTION 

Routine genetic evaluations for Australian terminal sire, maternal and Merino sheep have utilised 
single-step genomic BLUP (SS-GBLUP) since 2017 (Brown et al. 2018). For the genomic 
relationship matrix used in these analyses, the SNPs used were based on a set that passed quality 
control from the ISAG 50k sheep panel. In 2019, a new genomic panel for sheep was introduced 
(GeneSeek Genomic Profiler Ovine 50k, Neogen) which included approximately 5000 additional 
predictive SNPs that have been significantly associated with specific growth, carcase and eating 
quality traits in sheep (Moghaddar et al. 2019). The union of all SNPs on all genomic panels was 
chosen (including the predictive SNPs), with imputation of missing SNPs on each panel, followed 
by imputing all panels to the union set, resulting in 60,410 SNPs used in SS-GBLUP.  

The methods commonly used for constructing the genomic relationship matrix (GRM) for 
GBLUP (VanRaden 2008; Yang et al. 2010) assumes that all SNPs have equal weighting. While 
equal weighting on SNPs is reasonable for random SNPs, it may be appropriate to treat selected 
SNPs that are associated with specific traits differently. The GRM used in SS-GBLUP is blended 
with the NRM for these animals based on the parameter 𝜆𝜆, with the currently used value in Australian 
sheep evaluations set to 𝜆𝜆 = 0.5 resulting in the weighted GRM being the mean of the raw GRM 
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and NRM (McMillan et al. 2017). This paper investigated the impact on covariance matrix estimates 
of including all SNPs in the same GRM or fitting separate GRMs for regular random SNPs and 
selected SNPs. The ratio of genetic variance explained by each genetic random effect was 
investigated, considering trait specific values of 𝜆𝜆. Changes in covariances between genetic effects 
were also investigated.  

 
MATERIALS AND METHODS 

Data on reference flock animals from both the Sheep CRC Information Nucleus Flock (van der 
Werf et al. 2010) and MLA Resource Flock databases were obtained from the LAMBPLAN terminal 
sire analysis. Pre-adjusted phenotypic data were used for five traits: post-weaning weight (PWT, 
kg), carcase eye muscle depth (CEMD, mm), carcase c-site fat (CCFAT, mm), intramuscular fat 
(IMF, %) and shear force (SF5, Newtons). Phenotypes were only retained for animals with 
genotypes and where a phenotype was recorded for all six traits, resulting in 9688 animals with data. 
Phenotypes used were pre-adjusted for birth type, rearing type, age of measurement, age of dam, 
and hot carcase weight (trait dependant). Contemporary groups were taken from the LAMBPLAN 
analysis, with PWT belonging to one contemporary grouping (based on breed, flock, management 
group and sex, 𝑛𝑛 = 444) and all carcase traits using different contemporary groupings (based on 
combinations of breed, flock, management group, sex and kill group, 𝑛𝑛 = 376). 

The 60410 SNPs available were split into two sets: the random SNPs (𝑛𝑛 = 55,709) and the 
predictive SNPs (𝑛𝑛 = 4,701). Three marker sets were then used to construct breed-adjusted genomic 
relationship matrices (GRMs), using the method described by Gurman et al. (2019). These GRMs 
were labelled 𝑮𝑮𝑟𝑟 for the random SNPs,𝑮𝑮𝑝𝑝 for the predictive SNPs and 𝑮𝑮𝑟𝑟𝑟𝑟 for the combined set of 
SNPs. A corresponding pedigree-based relationship matrix for animals with genotypes was also 
constructed based on the extended pedigree including all known ancestors. To accommodate 
variance component estimation using the software package ‘mtg2’ (Lee et al. 2016), animal by 
animal relationship matrices were constructed for the other random effects to be considered, genetic 
groups and dam permanent environment. Genetic groups (𝑛𝑛 = 89) were included by constructing a 
matrix of pedigree-based breed proportions, 𝑸𝑸, where the rows sum to unity and animals with known 
parents are the average of their parental group proportions. These proportions were then converted 
to an animal by animal matrix by 𝑸𝑸𝑸𝑸𝑇𝑇. Similarly, for the dam permanent environment effect, an 
incidence matrix was constructed relating dams to animals, 𝑾𝑾, which was converted to an animal 
by animal matrix 𝑾𝑾𝑾𝑾𝑇𝑇 .  

Pairwise bivariate models for all trait combinations were then analysed using various 
combinations of the genetic random effect matrices described above. The general model fitted was 
𝒀𝒀 = 𝑿𝑿𝑿𝑿 + ∑ 𝒁𝒁𝒖𝒖𝑖𝑖𝑛𝑛

𝑖𝑖=1 + 𝒆𝒆 where 𝒀𝒀 is the data in multivariate form; 𝑿𝑿 is the incidence matrix for the 
contemporary groups; 𝒃𝒃 is the vector of fixed-effect solutions; 𝒁𝒁 is the incidence matrix relating 
animals to breeding value estimates; 𝒖𝒖𝑖𝑖 is the vector of random effect solutions for the 𝑖𝑖th random 
effect and 𝒆𝒆 represents the residual. The model is also such that var(𝒁𝒁𝒖𝒖𝑖𝑖) = 𝑮𝑮𝑖𝑖 ⊗ 𝚺𝚺𝒊𝒊𝟐𝟐 where 𝑮𝑮 is 
the random effect matrix for the 𝑖𝑖th effect (𝑮𝑮 = {𝑨𝑨,𝑮𝑮𝑟𝑟 ,𝑮𝑮𝑝𝑝,𝑮𝑮𝑟𝑟𝑟𝑟,𝑸𝑸𝑸𝑸𝑇𝑇 ,𝑾𝑾𝑾𝑾𝑇𝑇} and 𝚺𝚺𝒊𝒊𝟐𝟐 is the estimated 
covariance matrix for the random effect. For all models presented, genetic group and permanent 
environment effects of the dam were also included. 

 
RESULTS AND DISCUSSION 

Significantly higher log-likelihood values were found for the models that contained two GRMs. 
Models that included GRMs had higher heritabilities than the pedigree-only models (Table 1). 
Further, the highest trait heritabilities were observed in the models that contained 𝑮𝑮𝑟𝑟𝑟𝑟. The 
proportion of the total genetic variance explained by the GRMs was between 0.59 and 0.86, with the 
model containing 𝑮𝑮𝑟𝑟𝑟𝑟 explaining a slightly higher proportion than the model containing only 𝑮𝑮𝑟𝑟 
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(Figure 1). The model that contained separate 𝑮𝑮𝑟𝑟 and 𝑮𝑮𝑝𝑝 either explained less variance than the 
model containing only 𝑮𝑮𝑟𝑟 (see CCFAT and PWT) or less than the model containing 𝑮𝑮𝑟𝑟𝑟𝑟 (see CEMD, 
IMF and SF5). These estimates of 𝜆𝜆 are larger than the value of 𝜆𝜆 currently used in 
MERINOSELECT and LAMPLAN analyses, suggesting that further investigation is required to 
determine if this finding is consistent for other traits or if 𝜆𝜆 should be trait specific.   

 
Table 1. Heritabilities calculated from the sum of all genetic effects in each model 

Random Effect 
Model 

PWT CEMD CCFAT IMF SF5 

𝑨𝑨 0.217 0.202 0.225 0.629 0.305 
𝑨𝑨 + 𝑮𝑮𝒓𝒓 0.283 0.225 0.252 0.636 0.313 
𝑨𝑨 + 𝑮𝑮𝒓𝒓𝒓𝒓 0.290 0.237 0.259 0.631 0.307 

𝑨𝑨 + 𝑮𝑮𝒓𝒓 + 𝑮𝑮𝒑𝒑 0.274 0.227 0.253 0.614 0.267 
Abbreviations: A: NRM, 𝑮𝑮𝑟𝑟 GRM calculated from random SNPs, 𝑮𝑮𝑝𝑝 GRM calculated from the predictive 
SNPs, 𝑮𝑮𝑟𝑟𝑟𝑟 GRM calculated from all SNPs  
 

 
Figure 1. Proportions of the total genetic variance explained by each random effect. 
Abbreviations listed in Table 1 
 

The genetic correlations between traits were not uniform across alternative models for genetic 
effects (Figure 2). While for most traits the correlations were fairly consistent, some trait pairs show 
much larger differences in the genetic correlations between models and random effects included, 
which the most evident of these being those correlations being CCFAT-PWT and CEMD-PWT. For 
both of these trait pairs, the estimated correlation was slightly negative between CCFAT-PWT and 
close to zero for CEMD-PWT from the model with only the NRM. When GRMs were added, these 
NRM correlations were estimated as strongly positive and the GRM correlations strongly negative. 
It should be noted that these differences largely cancel out when considering the overall genetic 
correlation. In some cases (CEMD-PWT, CF5-PWT, CEMD-SF5), the correlation estimated for the 
effects of 𝑮𝑮𝑟𝑟 and 𝑮𝑮𝑝𝑝 were different, suggesting here that the selected and random SNPs are capturing 
different genetic effects on these traits. Further investigation is required to determine why these 
differences in correlations occur. 

A cross-validation study using the variance components from this study was also conducted to 
investigate the benefits on predictive ability of using two GRMs or a single GRM with all SNPs 
together in a large scale BLUP analysis (Li et al. 2021). 
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Figure 2. Estimated correlations between traits for the genetic random effects for all four 
models. Abbreviations listed in Table 1. One correlation was estimated to be larger than one 
and was therefore modified to one for presentation 
 
CONCLUSIONS 

This study found that the current value of 𝜆𝜆 = 0.5 used in Australian sheep genetic evaluations 
was lower than that estimated for the carcase and eating quality traits examined. Higher log-
likelihoods values were estimated for the models containing two GRMs, however, this often resulted 
in slightly lower heritabilities compared to a model that contained all SNPs in one GRM. Including 
GRMs in the analysis resulted in different genetic correlations for some trait pairs from different 
GRM/NRM combinations. These results suggest that not considering the GRM in variance 
component estimation for SS-GBLUP can result in variances incorrectly proportioned between 
NRM and GRM. Further work is required to examine these impacts in other populations with 
different genomic population structures and in different traits.  
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