
390

 Novel Phenotypes and Other Industries

APPLYING NEXT GENERATION PHENOTYPING STRATEGIES FOR GENETIC 
GAIN IN DAIRY CATTLE

J.E. Pryce1,2, T.T.T. Nguyen1, P.N. Ho1, T.D.W. Luke1, S. Rochfort1, W.J. Wales3, P. Moate3, L.C. 
Marett3, G. Nieuwhof1,4, M. Abdelsayed4, M. Axford4, M. Shaffer4, M. Haile-Mariam1

1Agriculture Victoria Research, AgriBio, Bundoora, Victoria, 3083 Australia
2School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083 Australia

3Agriculture Victoria Research, Ellinbank, Victoria, 3821 Australia
4DataGene Ltd, Agribio, Bundoora, Victoria, 3082 Australia

SUMMARY
Genomic selection is changing how we selectively breed animals and, more recently, for the 

traits we select. In addition to providing genomic breeding values for traits that were traditionally 
evaluated through progeny-testing of Australian dairy cattle, genomic breeding values have already 
been provided for two novel traits. Feed Saved, and Heat Tolerance, were released in 2015 and 2017, 
respectively. Our focus for dairy cattle breeding is now on traits associated with animal health, fertility 
and impacts on the environment. This is being achieved by directly selecting measurable phenotypic 
traits, or indirectly using tools such as mid-infrared spectral data and automated sensor devices to 
identify predictors of these traits. Greater collaboration between scientific disciplines and countries is 
likely to facilitate development of data-sets that will serve as better reference populations for genomic 
selection of new traits into the future.

INTRODUCTION
Genomic selection has transformed worldwide livestock and plant breeding. While genomic 

selection has changed how we select, it has not substantially changed the traits we select for. Having 
said this, there are recent examples of traits that are now being selected for that would not be possible 
without genomic selection. In this paper we describe two examples of how genomic selection has 
enabled the next generation of breeding values for dairy cattle. In addition, we will explore new 
opportunities that leverage off advances in phenotyping.

GENOMIC REFERENCE POPULATIONS
For most traits evaluated in dairy breeding, the genomic reference population is usually composed 

of bulls with large daughter groups. Often published breeding values include information from the 
animal’s pedigree, including progeny and ancestors, in addition to the genomic component. However, 
for expensive or difficult to measure traits, it is not cost effective to phenotype large daughter groups. 
Instead the reference population can be genotyped females that have the desired phenotype measured 
directly. The Australian Genomic Information Nucleus (Ginfo) started in 2013 with around 100 herds 
and 30,000 cows and has contributed to the increase of reliabilities of genomic ABVs and played a 
key role in development of genomic breeding values of novel traits.

TECHNOLOGICAL ADVANCES
The use of fully automated phenotyping in animal breeding is still in its infancy. Many precision 

farming technologies, such as pedometers, automatic temperature devices, automated oestrus detection, 
daily body condition scoring and bodyweight scales are becoming more common on modern dairy 
farms (Egger-Danner et al. 2014). To make substantial advances in low and moderately heritable 
traits, it is important to measure phenotypes on a large number (>10,000) of animals. Generating 
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quality phenotypes from large amounts of data is a challenge that requires expertise in interpretation 
of data and how it can be used for selection. It is important to consider the effect of any new breeding 
objective on other traits in the breeding goal.

Sensors. The use of sensor technology alongside genomic selection could lead to a further 
improvement in the prediction of complex traits, such as fertility, as the data obtained is likely to be 
more objective than other sources and potentially provide new information. For example,  Talukder et 
al. (2015) compared gold standard progesterone-evaluated oestrus detection, infrared thermography, 
heat and rumination tags (e.g. Hi Tag, SCR Engineers, Israel) and visual assessment of mounting 
indicators. The mounting indicators had 100% positive predictive values, while prediction using 
thermography was poor. The sensor tags performed reasonably well with 70% positive predictive values. 

Mid-infrared spectroscopy (MIR). Mid-infrared spectroscopy involves passing a beam of light 
through a milk sample to provide data in the form of spectra (absorbance or reflectance at specific 
wavelengths). Farmers currently receive regular reports from their herd test centres with information 
on milk volume and fat and protein concentration generated from MIR. Analysis of milk MIR has 
been used to predict other milk characteristics such as milk fatty acids, milk protein composition, 
milk coagulation properties, milk acidity, mineral composition and ketone bodies with reasonable 
accuracy (De Marchi et al. 2014). 

Mid-infrared prediction equations are already showing promise to aid management decisions 
regarding complex traits. A good example is beta-hydroxy-butyrate (BHB) concentration, where 
most MIR prediction equations are calculated using the concentration of BHB in milk (Grelet et al. 
2016). The BHB concentration in milk can also be used to predict the BHB concentration in blood 
(Luke et al. 2019). This is important as sub-clinical ketosis in dairy cattle is often diagnosed using 
of the concentration of BHB in blood, hence using MIR in milk to predict metabolites measured in 
blood is likely to be a suitable practical approach to manage metabolic disease. The way in which 
MIR can be used for selection purposes may differ from management purposes i.e. it may not enhance 
genomic prediction. However, it has already been shown to be a powerful tool to identify genetic 
variants associated with milk composition (Benedet et al. 2019).

Multi-omics. There may also be opportunities to use information from multiple sources. Examples 
include direct measurements, the metagenome (e.g. rumen, reproductive etc), the proteome/metabolome 
(protein and metabolite structure and function) and functional genomic assays (e.g., methylation, 
transcriptomics etc.). When these techniques are used in conjunction with sequencing technologies, 
causal variants can be identified, which should lead to better responses to selection. Ultimately, multi-
omics approaches could enhance selection of existing and novel traits. 

FEED SAVED AND GREENHOUSE GAS EMISSIONS
The Feed Saved Australian Breeding Value (ABV) comprises the energy required for maintenance, 

through liveweight breeding values calculated from conformation scores (Haile-Mariam et al, 2014) 
and residual feed intake (RFI) as a genomic prediction evaluated in heifers and cows. The reference 
population for RFI comprises around 2000 Australian heifers and cows and European Holstein cows 
(Pryce et al. 2015). The current reliability of Feed Saved is 35-40%.

Maintenance of this breeding value requires additional data from cows that are contemporaries of 
the current national population. One way to increase the accuracy of genomic breeding values is to 
increase the size of the reference population through large international collaborations. An example 
of this is the global dry matter initiative (gDMI) where a reference population of around 10,000 cows 
(Berry et al. 2014). More recently, the Efficient Dairy Genome Project, which is a multi-national research 
initiative led by Canada and it currently (April 2019) has collated feed intake records from 4,779 
cows (T. Chud, personal communication). Each partner has free access to the database that includes 
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feed intake, production and liveweight phenotypes in addition to pedigree and genomic information.
Technological advances to measure feed intake in commercial cows are occurring rapidly. For 

example, in dairy cattle in confined systems, cameras are being used to estimate volume changes along 
a feed lane before and after feeding to estimate the change in volume of feed (Bloch et al. 2019). In 
grazing environments, bite meters can be used to measure feeding behaviour discriminating between 
time spent biting, chewing and ruminating. It is more challenging to measure the volume of each bite 
and the nutrient concentrations of the pasture eaten. If this can be overcome, then individual feed 
intake records might become more common, especially if the sensors have multiple functions, so that 
farmers are motivated to purchase them. 

In recent times, there has been a push to share phenotypes on individual cow methane emissions. 
Methane production is an expensive phenotype to measure and again, international cooperation is an 
attractive way to develop a dataset that is large enough for genomic prediction. There are many ways 
to measure methane emissions, some of which measure the total methane emitted by an individual 
cow in a day (Deighton et al. 2014). Others measure the methane emitted only at certain times or 
locations (Hegarty 2013). Therefore, there has been a requirement to develop statistical ways to 
combine heterogeneous data (Haas et al. 2018). In addition to multi-country reference populations, 
there may also be a benefit to bringing together data on different breeds, such as beef breeds.

HEAT TOLERANCE
Worldwide, heat stress is a concern for many livestock production systems as it affects animal 

welfare and reduces productivity. In December 2017 genomic estimated breeding values (GEBV) for 
heat tolerance in dairy cattle were released for the first time in Australia. The dataset was constructed 
by merging herd-test production records with weather station data. Heat tolerance phenotypes were 
defined as the rates of decline in milk, fat and protein yield after a heat stress event (i.e. temperature-
humidity index exceeds 60) and were estimated using a reaction norm model (Nguyen et al. 2016). The 
GEBV has been validated using divergent lines managed in controlled hot weather events (Garner et al. 
2016). Although the reliability of heat tolerance is moderate (on average around 38%), it is expected 
that this will improve as the size of reference populations are increased. The genetic trend for heat 
tolerance has worsened, the genetic correlation with the Australian national selection index (Balanced 
Performance Index; BPI) is -0.20. Including heat tolerance in the BPI could improve farm profitability.

There are other ways that heat impacts dairy cows. For example, Dahl et al. (2016) stated that heat 
stress reduces dry matter intake, which in turn reduces yield and compromises immune function and 
if heat events are experienced in late gestation calf survival and performance is affected. Therefore, 
there is a need for further research on the impacts of heat stress on other traits to develop a multi-
faceted heat tolerance breeding value.

HEALTH TRAITS
Most genomic breeding values associated with health of dairy cattle have either been developed 

using records of “clinical cases” collected from farms, or by using predictor traits. For example, 
Abdelsayed et al (2017) obtained clinical disease data from >150k cows in 90 Ginfo herds, concluding 
that many health traits have sufficient genetic variation for selection purposes. 

The problem with farmer recorded data is that it is often inconsistent, incomplete, or sparse and 
generally only works well when electronic record keeping is mandatory for other purposes. However, 
there are opportunities to improve the reliability of genomic breeding values through the use of 
predictor traits, such as conformation traits, e.g. udder conformation for mastitis resistance and feet 
and leg traits for lameness. Technological advances in phenotyping, described earlier, could offer 
potential solutions for genetic selection.
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FERTILITY
Currently, most fertility breeding values around the world consider calving, mating and pregnancy 

data usually recorded by farmers. More extensive use of mid-infrared (MIR) spectroscopy (generated 
through machines used in routine commercial herd-testing), advanced phenotyping (using sensor 
technology etc) and genes identified to explain some of the genetic variation in fertility are under 
study and to expected deliver more precise genomic breeding values of fertility by getting closer to 
the biology of this complex trait. 

CONCLUSIONS
New technologies will generate large amounts of data that can be used for selection purposes and 

it is expected these will improve the way we select for current and future breeding objectives. As the 
emphasis of genetic evaluations changes from increasing output to reducing production costs and 
environmental footprints and improving animal welfare, access to quality data will be a challenge. 
This can be met by collaboration including with international partners and with farmers and research 
working in other disciplines to ensure expensive data is used for many purposes.
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