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SUMMARY
Genomic prediction for breeds with a small population size, such as the Australian Red, is 

challenging, because reliability depends on the size of the reference population and its relatedness 
to the animals evaluated. Our objective was to find the optimal reference population for Australian 
Red, comparing within breed and multi breed prediction for milk yield, fat yield, protein yield and 
somatic cell count.

Our results show that while multi breed prediction can result in higher accuracies than within breed 
prediction, adding fewer animals that are more closely related to the validation population can result 
in a higher reliability than adding a much larger number of individuals that are more distantly related.

INTRODUCTION
Genomic prediction for breeds with a relatively small population size, such as Australian Red 

cattle, is challenging, because the reliability of prediction is dependent on the size of the reference 
population (Goddard 2009). Sharing reference populations across breeds or countries may increase 
the size of the reference population, though this has only been advantageous for closely related breeds, 
such as the Nordic Red cattle breeds (Brøndum et al. 2011). Australian Red cattle are influenced by 
several Red dairy breeds, including Scandinavian Red cattle breeds, Ayrshire, Shorthorn, Illawarra 
and Red and White Holstein (http://www.aussiereds.com.au). 

Multi breed prediction often analyses the same trait in different breeds as a single trait with a breed 
effect to account for differences across breeds. Not all QTL impact the expression of quantitative 
traits in the same way across breeds (Raven et al. 2014) and there may be QTL by breed interactions 
resulting in different effects of QTL for different breeds. Therefore, it may be appropriate to fit the 
same trait in different breeds as multiple correlated traits (Olson et al. 2012). 

Because linkage disequilibrium is maintained over much shorter distances across breeds than 
within breed (de Roos et al. 2008), prediction reliability is expected to decrease faster across breeds 
than within a breed when the distance between causal mutations and prediction markers increases 
(van den Berg et al. 2016). Consequently, the standard 50K SNP chip may not be dense enough for 
accurate prediction from Holstein to Australian Red, and variants close to causal mutations could 
potentially result in a higher reliability. 

The objective of this study was to find the optimal reference population for Australian Red dairy 
cattle. Within and multi breed reference populations were compared, with multi breed populations 
containing either a low number of Holstein animals that are relatively closely related to Australian 
Red cattle based on a genomic relationship matrix between Holstein and Australian Red cattle, or 
larger numbers of more distant Holstein and Jersey individuals, used a single trait model or a multi 
trait model that fitted the same trait in different breeds as multiple correlated traits. 

MATERIALS AND METHODS
We calculated the reliability of genomic prediction in Australian Red bulls for different reference 

populations. The reference population contained up to 3,248 Holstein bulls, 48,386 Holstein cows, 
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807 Jersey bulls, 8,734 Jersey cows and 3,041 Australian Red cows. Genome-wide complex trait 
analysis (GCTA) (Yang et al. 2011) was used to first construct a genomic relationship matrix of the 
full reference population and perform a principal component analysis (PCA). In total, 10 reference 
populations were used. The largest reference population contained 3,041 Australian Red cows, 51,634 
Holstein and 9,541 Jersey individuals, and the smallest only the Australian Red cows. Additional 
reference populations contained the Australian Red cows and either all Holstein individuals or only 
Holsteins with a value for the first principal component (PC1) above a certain threshold. Figure 1 
shows the first two principal components of the PCA, and indicates the groups used to construct 
different reference populations. The number of individuals in each of these seven subsets is shown in 
Table 1. The validation population contained 280 Australian Red bulls. Deregressed proofs (DRP) for 
milk (MY), fat (FY) and protein yield (PY) and somatic cell count (SCC) were calculated following 
Garrick et al. (2009) and used as phenotypes. 

Figure 1. First two principal components (PC1 and PC2) of the genomic relationship matrix 
of the multibreed reference population containing Holstein and Australian Red individuals. 
Different colours show different subsets of animals that are used to construct different reference 
populations

Table 1. Number of Holstein and Australian Red (Red) individuals in different reference pop-
ulations based on the first principal component

Breed H1-7+R H2-7+R H3-7+R H4-7+R H5-7+R H6-7+R H7+R
Holstein 39,788 29,809 19,835 9,880 4,915 2,436 1,197
Red 3,041 3,041 3,041 3,041 3,041 3,041 3,041

Genotypes were available for the Illumina BovineSNP50 chip (50K, real or imputed). Because 
the LD between QTL and prediction markers on the 50K chip may not be conserved across breeds, 
we also analysed genotypes on a custom chip with 46,516 imputed sequence variants selected by 
Xiang et al. (2019) that are expected to be enriched for dairy trait QTL (XT).
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For each of the reference populations, we used the GBLUP model as implemented in MTG2 (Lee 
and van der Werf 2016) to predict GEBV of the validation population. The reliability of genomic 
prediction was calculated as the squared correlation between DRP and GEBV divided by the average 
reliability of individuals in the validation population. The model either considered the same trait in 
different breeds as a single trait, fitting a breed effect to correct for breed differences (ST-GBLUP), 
or fitted the same trait in different breeds as different, correlated traits, using a multi trait model 
(MT-GBLUP). 

Figure 2. Reliability of genomic prediction as a function of the number of Holstein and Jersey 
individuals in the reference population (nNotRed) for milk yield (MY), fat yield (FY), protein 
yield (PY) and somatic cell count (SCC), using variants on the 50K SNP chip (50K) or selected 
sequence variants (XT). For the multi breed reference populations, the same trait in different 
breeds was analysed using a single trait model fitting a breed effect (ST) or a multi trait model 
considering the trait as multiple correlated traits in different breeds (MT)
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RESULTS AND DISCUSSION
Figure 2 shows the reliability as a function of the composition of the reference population. The 

overall pattern was similar for all traits: the highest accuracies were obtained using a multi breed 
reference population with a limited number of Holstein individuals that are relatively closely related 
to the Australian Red. population. 

For all traits tested, the highest reliability was obtained with the MT model and a multi breed 
reference population. The XT variants only led to a small difference in reliability compared to the 50K 
variants. For MY, FY and PY, the reference population resulting in the highest reliability contained 
around 2,400 Holsteins (with reliabilities of 0.34, 0.56, 0.52 for MY, FY and PY, respectively), while 
for SCC, the highest reliability (0.50) was obtained with 13,822 Holsteins. Adding Jerseys to full 
reference population containing all Holstein individuals resulted in a similar reliability as obtained 
without the Jerseys.

Except for FY, the reliability obtained with the full multi breed reference population was lower 
than the reliability obtained with the within breed reference population. The decrease in reliability 
when adding larger numbers of Holstein individuals to the reference population was larger with the 
ST model than with the MT model.

The GBLUP prediction models assume all variants are equally important to predict the trait. Models 
that can allocate higher importance to variants linked to causal mutations, such as Bayesian variable 
selection models or a weighted GBLUP, may result in higher and be less prone to the decrease in 
reliability we observed when adding larger numbers of Holstein individuals to the reference populations. 

CONCLUSIONS
Our results show that while multi breed prediction can result in higher accuracies than within 

breed prediction, adding fewer animals that are more closely related to the validation population can 
result in a higher reliability than adding a much larger number of individuals that are more distantly 
related. To implement genomic prediction in Australian Red cattle, an international reference population 
containing other Red breeds is likely to lead to a higher reliability than a multi breed Australian 
reference population. 
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