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SUMMARY
Ways to improve accuracy of genomic prediction (GP) for Australian (AU) crossbred cows by 

using data of about 33,000 cows from New Zealand (NZ), where crossbreeds are the dominant breed 
group (BG), and AU data were assessed. Accuracy of GP for validation cows was tested using single 
trait and multi-trait models, with data from different BGs considered as correlated traits. When data 
of the different BGs were considered as separate traits, the genetic correlations for milk yield (MY) 
were higher compared to that for fat yield (FY). The lowest correlations for all traits were between 
pure Holstein (H) and Jersey (J) as expected, and among the milk yield traits the lowest correlations 
were for FY. The estimated heritability and genetic correlations using the high-density SNP chip were 
slightly higher than 50K chip. Accuracy of GP using the NZ reference set (RS) was not better than 
AU reference. For MY, the accuracy of GP for AU crossbreed cows was like that observed for pure 
breed H cows. However, for FY and protein yield (PY), the accuracy of GP was lower in HJ (F1) and 
HHJ (back cross to H) crosses. The joint NZ-AU RS resulted in 1 to 5% increase in accuracy for FY 
and PY of mainly crossbred cows.

INTRODUCTION
A joint project to improve accuracy of GP by sharing cow data in the pasture-based dairy systems of 

NZ and AU has been established by Agriculture Research Victoria and CRV (cattle breeding company 
in The Netherlands). A recent analysis showed that reliability (i.e. squared accuracy) of GP for milk 
traits for NZ validation bulls can be increased by 4 to 7% by including about 60,000 AU cows to a 
RS that included all NZ animals (Haile-Mariam et al. 2019). The benefit of adding NZ cows to AU 
RS is expected to be low for AU pure breed prediction because the number of genotyped NZ cows is 
relatively small. However, the number of crossbred cows from NZ is more than that from AU and this 
could be used to improve accuracy GP for AU crossbreed cows and possibly even for purebred Jersey 
for which the AU RS is small. Several studies have shown that the accuracy of GP from multibreed 
RS is not better than single-breed RS particularly when the breeds are distantly related (Calus et al. 
2018). The inclusion of crossbred animals in the RS could improve the accuracy GP for crossbreds 
which was reported to be lower than those observed for pure breeds (Khansefid et al. 2019) and for 
all animals by improving the links between the pure breeds. 

Data from several breeds for GP have been used in joint analyses in several ways including by 
considering the same trait recorded in different breeds as correlated traits in multi-trait (MT) model 
(Calus et al. 2018; Karoui et al. 2012) or by fitting breed as fixed effect in univariate model (Uni). In 
the MT model, the marker effects could be assumed to be different in different breed groups (BGs) 
where performance in J and H and their different crosses are treated as different but correlated traits. 
Using milk yield traits as response variable, the objectives of this study were: 1) to estimate genomic 
correlation (rg) between the same trait measured in different BGs; 2) to assess the accuracy of GP for 
AU crossbred and purebred validation cows using NZ and AU cows as RS. 
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MATERIALS AND METHODS
Performance data of about 33,000 NZ genotyped cows and their contemporaries were obtained 

from NZ and included in the May 2018 genetic evaluation of DataGene for AU dairy cattle. In 
addition to NZ cows, there were close to 60,000 AU cows in the dataset. All NZ cows and most AU 
cows were genotyped with low density SNP chips (~ 10K SNP). These genotypes were imputed first 
to Bovine 50K SNP chip and then to High Density (HD) 800K SNP panels. After edit, in total the 
HD genotype set included 633,374 SNP and the 50K chip included 40,850 SNPs. The HD and 50K 
genotypes were used to create genomic relationship matrices (GRMs). The GRM that included J, H 
and crossbreeds was calculated for NZ and AU reference and validation cows (Table 1) separately 
and jointly following Yang et al. (2010). The number of cows included in the RS (born before 2011) 
and cows used for validation (born after 2010) is shown in Table 1. The response variable which 
were DRP for milk yield traits were analysed using MTG2 (Lee and van der Werf 2016). When all 
data were considered as the same trait, BG was fitted as fixed effect and in the multi-trait model data 
of each BG was considered as separate trait. In addition to the 5-trait (BGs) in NZ and 4-trait model 
in AU, the data from each country were analysed assuming a 3-trait model by combining the back 
crosses (i.e. HHJ or JJH) into their respective pure BG.  

Adjusted accuracy was calculated as correlation between direct genomic breeding values (DGVs) 
and DRP, divided by the accuracy of the DRP of the validation cows. To ensure that the accuracies 
were less affected by high relationship among AU reference and validation cows, a cow was included 
in the validation set if its genomic relationship to the average of the top 10 cows in the RS (Clark et 
al. 2012) was below 0.25. As a result of this, no J cows were used for validation. 

Table 1. Number of NZ and AU cows in reference set by breed group (BG: Holstein [H], back 
cross to H [HHJ], F1 [HJ], back cross to J [JJH] and Jersey [J]) which their records were con-
sidered as different traits (5, 4 or 3 traits), and the number of AU validation cows

Breed group NZ reference set AU reference set AU validation setNumber 5-Trait 3-Trait Number 4-Trait 3-Trait
H 8624 Trait 1 Trait 1

Trait 1
21633 Trait 1 Trait 1

Trait 1
4944

HHJ 10125 Trait 2 1401 Trait 2 965
HJ 8675 Trait 3 Trait 2 1308

-
Trait 3

-
Trait 2 344

JJH 1481 Trait 4 Trait 3
Trait 3

-
Trait 3

-
J 3915 Trait 5 5905 Trait 4 -

RESULTS AND DISCUSSION
Tables 2 and 3 show the proportion of variance explained by the GRM (genomic h2) in NZ and 

AU cows for MY and FY when the HD SNP chip was used. The genomic h2 was the lowest for PY 
when using NZ data where they varied from 0.14 to 0.18 and 0.15 to 0.19 using the 50K and HD 
SNP chip, respectively. In the AU data, genomic h2 for PY were only slightly lower than or similar 
to that for FY. In all cases the HD SNP chip explained about 2 to 5% more variance than 50K SNP 
chip (results not shown). Genetic correlations (rg) among the BGs, when each BG was considered as 
traits, were lower for FY than for MY (Table 2 and 3). The pattern of rg for PY was more similar to 
MY than to FY in NZ data but similar to FY in AU data. Differences in rg between SNP chips were 
small, but in general the HD SNP chip showed higher correlations among the BGs than the 50K SNP 
chip (Table 2 and 3). As expected, rg had higher standard errors (up to 0.10) than genomic h2 (up to 
0.04). Although the genomic h2 were higher when AU cow data were used, the standard errors of 
the genomic h2 and the rg, particularly those involving crossbred BG, were higher in AU than NZ 
cows. Overall the use of 50K SNP chip “correctly” estimated the rg to be the lowest between J and 
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H, whereas the HD SNP chip estimated the lowest correlation to be between H and the HJJ (Table 
2), though the differences were not significant given the standard errors which were up to 0.15 in AU 
data. The observation that the HD SNP chip explained more variance than the 50K SNP chip agrees 
with van den Berg et al. (2016), where they found that adding selected sequence variants increased 
h2 compared to the 50K SNP chip. Lower rg between breeds when BGs are considered as traits for FY 
compared to MY in this study also agrees with other studies (Calus et al. 2018; van den Berg et al. 
2016). Overall that our rg estimates even between the two pure breeds (H and J) are higher than most 
literature estimates (van den Berg et al. 2016) may be due to some level of crossbreeding between 
J and H in NZ and AU (de Roos et al. 2008; Pryce et al. 2011) several generations back or due to 
similarity in production environment (i.e. pasture-based). The 3-trait model based on NZ and AU 
data sometimes showed the lowest rg to be between HJ and J rather than between J and H which was 
unexpected. This may be due the small sample size and possibly some errors in the BG classification.

Table 2. Genomic h2 in NZ reference cows of high-density SNP chip (HD) for milk and fat yield 
on the diagonal (in bold) and genetic correlations between breed groups for milk and fat yields 
using HD (above diagonal) and 50K SNP chip (below diagonal) in 5-trait model

Breed group
Milk Fat

H HHJ HJ JJH J H HHJ HJ HJJ J
H 0.30 0.97 0.85 0.73 0.77 0.26 0.97 0.76 0.42 0.49
HHJ 0.96 0.30 0.93 0.85 0.85 0.98 0.23 0.86 0.65 0.57
HJ 0.83 0.91 0.31 0.95 0.87 0.78 0.86 0.22 0.85 0.80
HJJ 0.77 0.84 0.92 0.36 0.86 0.41 0.63 0.84 0.24 0.90
J 0.72 0.82 0.86 0.89 0.4 0.47 0.55 0.78 0.88 0.27

Table 3. Genomic h2 in AU reference cows of high-density SNP chip (HD) for milk and fat yield 
on the diagonal (in bold) and genetic correlations between breed groups for milk and fat yields 
using HD (above diagonal) and 50K SNP chip (below diagonal) in 4-trait model

Breed group
Milk Fat

H HHJ HJ J H HHJ HJ J
H 0.34 0.96 0.81 0.88 0.23 0.96 0.66 0.57
HHJ 0.94 0.37 0.88 0.97 0.92 0.24 0.65 0.57
HJ 0.78 0.78 0.40 0.78 0.63 0.56 0.35 0.55
J 0.75 0.91 0.72 0.43 0.43 0.58 0.50 0.26

The accuracy of GP for HJ and HHJ was higher than H for MY when NZ cows were used as RS 
(Table 4) because the crossbred cows dominate the set (Table 1). When using AU RS only, accuracy 
of GP was lower for crosses compared to H for FY (Table 2 and 3) and PY (results not shown) where 
rg between the BGs were also lower. The use of NZ cows as a RS is expected to have less contribution 
for GP of PY because the rg between performance in NZ and AU is lower (0.60 in H and 0.70 in J, 
Haile-Mariam et al. 2019) compared to both MY and FY and this will likely reduce the benefit of 
adding NZ RS to improve GP. However, the use of AU+NZ RS increased adjusted accuracy by 1 to 
5% (Table 4). Table 4 also shows that considering performance of cows of different BGs in MT or 
Uni model has little benefit on the accuracy.
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Table 4. Adjusted accuracy as correlation between direct genomic breeding values (DGVs) 
and DRP, divided by the accuracy of the DRP for validation Australian (AU) cows using New 
Zealand or AU cows in the reference, assuming data of cows from different breed groups to be 
the same trait (Uni.) or different (multi-traits) models from HD GBLUP 

Trait Breed group New Zealand Australia AU+NZ 
Uni. 3-Trait 5-Trait Uni. 3-Trait 4-Trait Uni.

Milk HJ 0.46 0.45 0.46 0.61 0.61 0.60 0.61
HHJ 0.43 0.44 0.42 0.59 0.59 0.58 0.60
H 0.33 0.33 0.35 0.58 0.58 0.57 0.59

Fat HJ 0.26 0.24 0.22 0.43 0.42 0.42 0.47
HHJ 0.28 0.26 0.23 0.46 0.46 0.45 0.48
H 0.29 0.28 0.28 0.55 0.55 0.55 0.56

Protein HJ 0.36 0.36 0.34 0.40 0.42 0.40 0.44
HHJ 0.23 0.24 0.24 0.36 0.36 0.36 0.37
H 0.34 0.33 0.34 0.54 0.54 0.54 0.55

CONCLUSIONS
Although the NZ reference did not provide better GP accuracy for AU crossbreed cows than AU 

RS, the joint use of AU and NZ RS increased GP for FY in HJ and HHJ cows and for PY in HJ only. 
In the case of MY accuracy of GP in crosses and H was similar, so adding NZ cows was not beneficial. 
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