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SUMMARY
Random Forest (RF) is one of the most popular machine learning methods for large genomics 

data analysis. It produces the variable important measures (VIMs) for individual features, which can 
be positive, zero or negative, indicating a positive or negative contribution of the feature. It is easy to 
interpret single nucleotide polymorphisms (SNPs) with positive or zero VIM values when applying 
RF for genomic prediction. However, little is known about the interpretation of SNPs with negative 
VIM values. Most importantly, what impact of these SNPs have on the genomic prediction accuracy 
of breeding values? In this study, using genotype information from 651,253 SNPs for 2,109 Brahman 
cattle with yearling weight phenotype, we applied the RF to identify 8,195 SNPs with negative VIM 
values and investigated their impact on genomic prediction. Specifically, we addressed the questions: 
1) How did these SNPs differ from the top SNPs chosen from the RF with positive VIM values or the 
SNPs randomly selected but evenly spaced along a genome? 2) Did these SNPs have any biological 
relevance? Our results show that 1) including the SNPs with negative VIM values in the genomic 
prediction would result in the increase in error variance and decrease in the accuracy of genomic 
prediction; 2) these SNPs had no biological functions. 

INTRODUCTION
Random Forest (RF, Breiman 2001) is one of the most commonly used machine learning methods 

for large genomics data analysis (Chen and Ishwaran 2012). One of its analysis output parameters is 
the variable importance measure (VIM). When applied to a continuous phenotype, RF generates the 
VIM - %IncMSE (percentage increase in Mean Squared Error). It measures an individual feature’s 
contribution to the prediction accuracy of decision trees, via the change of MSE when the data for 
a feature (here a SNP) is permuted while all others are kept constant, with valid VIM values being 
positive, zero or negative. The larger the value (i.e., more positive), the more important the feature is. 
When applying this method to a high-density SNP panel for genomic prediction of a quantitative trait 
with a moderate heritability, the questions are: 1) how do SNPs with negative VIM values behave? 
2) Do they have any biological relevance? In this study, we investigated the impact of SNPS with 
negative VIM values on the accuracy of genomic prediction and their possible molecular functions.

MATERIALS AND METHODS
Data. A Brahman cattle dataset, consisting of 2,109 genotyped animals with 651,253 SNPs per 

animal from the CRC for Beef Genetic Technologies (Porto-Neto et al. 2014), was used for this study. 
The animals were measured for yearling weight (YWT), which ranged from 115 to 353 kg with an 
average of 227.7 kg (±34.32kg). Since RF does not fit fixed effects into the process, prior to the RF 
analysis, the phenotypic values were adjusted for the fixed effects. These include contemporary group 
(combination of sex, year and location and 41 levels) and age (302-416 days). The residuals from the 
linear model of analysis of variance were then combined with the SNP information for the RF analysis.
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Identification of SNPs with negative VIM values (SNPnegvim) using RF. The detailed RF method 
can be found in Li et al. (2018). The algorithm incorporates both training and validation procedures 
in its process to build decision trees to examine individual SNP contributions to prediction accuracy. 
We carried out an initial hyper-parameter fine-tuning for tree size (NTree) from 10,000, 12,000, … 
20,000 using all SNPs, while the Mtry value was set as two times of the squared root of total number 
of SNPs.  A CSIRO high performance cluster computer with the R program (version 3.4.0) and the 
library randomForest was used for the analyses. 

Genomic prediction accuracy with and without SNPnegvim. A five-fold cross-validation scheme 
was applied to the RF and genomic prediction. The population was partitioned into 5 subsets and each 
time 4 subsets was used for training and the remaining subset was used for validating. In addition to 
the genomic prediction accuracy comparison between all SNPs with and without SNPnegvim, we also 
examined the results from the subsets of the top 1,000, 5,000, 10,000 and 50,000 SNPs with positive 
VIM values from the RF, and those of the same size but evenly spaced SNPs along the genome (denoted 
“Even”). A GBLUP model (VanRaden 2008) was used to estimate variance components and genomic 
breeding values (gEBVs), where the fixed effects in the model included the contemporary group and 
age. The accuracy of genomic prediction was calculated as the correlation between gEBVs and the 
adjusted phenotypic values, and then divided by the square root of heritability. The final estimates of 
genetic parameters were the average values from five validation analyses. The program AIREMLF90 
(Misztal et al. 2002) was used in the GBLUP analyses. 

Gene Ontology (GO) Enrichment Analysis. A locus-based gene ontology enrichment analysis 
using GREAT v3.00 (McLean et al. 2010) was undertaken. SNPs (±10 bp) were translated to human 
coordinates (GRC37/hg19) using UCSC’s liftOver tool (minMatch = 0.1) (Hinrichs et al. 2006). A 
binomial and a hypergeometric test were used to assess the enrichment of molecular function terms 
and biological process terms. 

Functional Enrichment Analysis. Cattle functional annotation was derived from i) histone 
chromatin marks in liver H3K27ac, and H3K4me3 (Villar et al. 2015); ii) ATAC-seq information 
from CD4+ and CD8+ from the Fr-AgENCODE (Foissac et al. 2018); iii) experimental in-house 
ATAC-seq in liver and muscle tissues; and iv) derived from current UMD3.1 annotation. To assess the 
significance of overlap between SNP datasets and functional genomic features we performed a Fisher’s 
exact test with false discovery rate correction using the R package LOLA (Sheffield and Bock 2016). 

RESULTS AND DISCUSSION 
Characteristics of the SNPs with negative %IncMSE values. The distribution of average VIM 

(%IncMSE) values (from 5-fold training datasets) for ranked SNPs (from the most important to the 
least important) is shown in Figure 1. Surprisingly, of the 651,253 SNPs, 180,056 (27.7%) were found 
to have a negative average VIM value. However, when investigated further, we found that only 8,195 
of these SNPs had the negative VIM values in all 5-fold datasets, and the remaining 171,861 SNPs 
varied between the datasets used. This clearly indicates that extreme caution needs to be taken when 
using the average of the VIM values from a cross-validation scheme as the criteria to identify the 
SNPs with negative VIM values. An extra step is required to validate the SNPs, because the SNPs 
with negative VIM values in one population could have positive VIM values in another population.

For these 8,195 SNPnegvim, the average MAF was 0.21 (with the range 0.01-0.50). We also checked 
the allele substitution effects from the previous GWAS study on this population (Porto-Neto et al. 2014) 
and found that these SNPs distributed along the whole genome, whereby 4,143 had positive effects 
and the remaining 4,052 had negative effects. However, the genotypes of these SNPnegvim were in fact 
imputed from an initial low-density panel of cattle 60k. These may reflect the quality of imputation.  
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Figure 1. Distribution of average variable importance measures of ranked SNPs 

Table 1. Average estimates of variance components and genomic prediction accuracy for dif-
ferent subsets of SNPs

Marker Additive Model
ha

2 σa
2 σp

2 †ACC
RF1,000 0.26±0.03 171.6±25.0 658.8±26.1 0.47
RF5,000 0.39±0.04 254.9±32.7 658.2±26.3 0.53
RF10,000 0.42±0.04 278.5±35.2 659.1±26.4 0.55
RF50,000 0.45±0.04 299.0±38.7 669.2±26.7 0.58
Even1,000 0.18±0.03 124.1±22.2 682.8±25.2 0.28
Even5,000 0.30±0.04 218.9±32.2 680.0±26.0 0.47
Even10,000 0.36±0.04 245.4±35.2 681.3±26.3 0.47
Even50,000 0.40±0.04 275.9±38.7 681.4±26.3 0.48
§643,058 0.41±0.05 281.4±39.4 679.5± 26.7 0.59
All SNPs (651,253) 0.41±0.05 281.0±39.6 679.6±26.7 0.55

§ All SNPs without 8,195 VIM negative SNPs; † Accuracy of genomic prediction

Genomic prediction accuracy with and without the negative VIM SNPs. Table 1 presents 
the estimates of variance components and the genomic prediction accuracies from using different 
sources of SNPs. In comparison to the accuracy results from using the whole panel (All SNPs, last 
row in Table 1, ACC = 0.55), the top SNPs from the RF (i.e. RF5,000 and RF10,000) showed very 
similar or higher (RF50,000) genomic prediction accuracy values. They significantly outperformed 
the same-size SNPs randomly selected but evenly distributed along the genome (Even-). Interestingly, 
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after removing 8,195 SNPnegvim, the genomic prediction with the remaining 643,058 SNPs (Table 1) 
resulted in an improved accuracy value (0.59) compared to the whole panel (0.55). This value was 
similar to that of using RF50,000. In addition, we discovered that all the evenly distributed SNP 
datasets contained about 20% SNPnegvim. These results suggest that including SNPnegvim in the whole 
panel would have caused the reduction in accuracy estimates.  

Gene Enrichment Analysis. When comparing the biological functions of the genes near 8,195 
SNPnegvim with those of RF5,000 or Even5,000, there was no significant enrichment found for 8,195 
SNPnegvim, nor for Even5,000. However, for RF5,000, were enriched for “RNA polymerase II core 
promoter sequence-specific DNA binding”, consisting of several transcription factors such as EGRF1, 
GATA3, GATA6, NFIL3, PAX6, PAX8 or SOX11. The latter, renowned for its role in embryonic 
development and determination of cell fate (Jiang et al. 2013). Finally, at the functional level, RF 
5,000 showed significant enrichment for experimental promoters and muscle regulatory regions.

CONCLUSIONS
In low commodity livestock or aquaculture species, a common practice in applying genomic 

selection is to genotype parents with a high-density SNP panel, genotype young progeny with a 
low-density panel and then impute the low-density panel to the high-density panel for genomic 
prediction. This study demonstrates that it is important to identify and remove the problematic SNPs 
(with negative VIM values) that increase the error variance and decrease accuracy of genomic pre-
diction. The machine learning method – Random Forest has merit in use as a pre-screening tool for 
i) identifying problematic SNPs; and ii) identifying subsets of SNPs that have biological functions 
for low-density panels.    

REFERENCES
Breiman L. (2001) Machine Learning. 45: 5.
Chen X. and Ishwaran H. (2012) Genomics. 99: 323.
Foissac S, Djebali S, Munyard K, Vialaneix N, Rau A, Muret K, Esquerre D, et al. (2018) bioRxiv 

316091.
HinrichsA .S., Karolchik D., Baertsch R., Barber G.P,. Bejerano G., Clawson H., Diekhans M., Furey 

T.S., Harte R.A., Hsu F., Hillman-Jackson J., Kuhn R.M., Pedersen J.S., Pohl A., Raney B.J., 
Rosenbloom K.R., et al. (2006) Nucleic Acids Res. 34: D590.

Jiang Y., Qing Q., Xie X., Libby R.T., Lefebvre V. and Gan L. (2013). J Biol Chem. 288: 18429.
Li B., Zhang N., Wang Y.-G., George A., Reverter A. and Li Y. (2018) Front. Genet. 9:237.
Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., and Lee D.H. (2002) Proc. 7th World Congr. 

Genet. Appl. Livest. Prod. Communication N° 28-07.
McLean C.Y., Bristor D., Hiller, M., Clarke S.L., Schaar B.T., Lowe C.B., Wenger A.M., and Bejerano 

G. (2016) Nat. Biotechnol. 28:495. 
Porto-Neto L.R., Reverter A., Prayaga K.C., Chan E.K.F., Johnston D.J, Hawken R.J., Fordyce G, 

Garcia J.F., Sonstegard T.S., Bolormaa S., Goddard M.E., Burrow H.M., Henshall J.M., Lehnert 
S.A. and Barendse W. (2014). PLOS One. 9: e113284.

Sheffield N.C. and Bock, C. (2016) Bioinformatics 32: 587.
VanRaden P.M. (2008) J Dairy Sci. 91: 4414.
Villar D., Berthelot C., Aldridge S., Rayner T.F., Lukk M., Pignatelli M., Park T.J., Deaville R., 

Erichsen J.T., Jasinska A.J., Turner J.M., Bertelsen M.F., Murchison E.P., Flicek P., Odom D.T. 
(2015). Cell 160: 554.


