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SUMMARY
Improving animal health and resilience is an increasingly important breeding objective for all 

livestock industries. In this study we estimated genetic parameters of serum metabolic profiles in 
early lactation dairy cows. A single serum sample was taken from 1,393 cows, located on 14 farms 
in south eastern Australia, within 30 days after calving. Sera were analysed for biomarkers of energy 
balance (β hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA)), mineral status (Ca and 
Mg), protein nutrition (urea and albumin) and immune status (globulins and albumin to globulin 
ratio (A:G)). After editing, 47,162 single nucleotide polymorphism marker genotypes were used for 
estimating genomic heritabilities and breeding values (gEBV) for these traits in ASReml. Heritabilities 
were low for BHBA, NEFA, Ca, Mg and urea (0.09, 0.18, 0.07, 0.19 and 0.18, respectively), and 
moderate to high for albumin, globulins and A:G (0.27, 0.46 and 0.41, respectively). The accuracy of 
genomic predictions was assessed by (1) calculating empirical accuracy using 5-fold cross validation, 
and (2) calculating theoretical accuracy using the prediction error variance obtained from ASReml. 
Empirical accuracies ranged from 0.20 to 0.40, being higher for traits with higher heritabilities. 
Theoretical accuracies were higher than respective empirical accuracies (0.31 – 0.51), but the results 
of the 2 methods were in excellent agreement (R2 = 0.89). While increasing the size of the reference 
population should theoretically improve accuracies, our results suggest that genomic prediction may 
allow identification of healthier cows that are less susceptible to diseases in early lactation.

INTRODUCTION
Most disease events affecting dairy cows occur in the first 30 days after calving (LeBlanc et 

al. 2006) and many of these diseases are associated with metabolic disorders such as ketosis and 
hypocalcaemia (Ospina et al. 2010). While heritability estimates of metabolic disorders are generally 
low (Uribe et al. 1995), sufficient genetic variance exists to suggest that improvements in metabolic 
stability can be achieved through genetic selection.

One way of assessing the metabolic health of cattle is serum metabolic profiling, which employs 
well-established epidemiological associations between the concentrations of several metabolites in 
serum, and the presence of both subclinical and clinical metabolic disorders (Payne et al. 1970). These 
metabolites include those associated with energy balance (BHBA and NEFA), mineral status (Ca 
and Mg), protein nutrition (urea and albumin) and immune status (globulins and albumin to globulin 
ratio). While extremely valuable, these phenotypes are costly and invasive to collect, making them 
impractical for traditional large-scale genetic evaluations. Genomic selection offers exciting potential 
for achieving genetic improvement in such difficult to measure and lowly heritable traits, by using data 
obtained from relatively small genotyped reference populations with high quality phenotypic data.

The objectives of this study were to (1) estimate the genetic parameters of serum biomarkers of 
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health in early lactation dairy cows using data collected from a genotyped female reference population, 
and (2) estimate the accuracy of genomic predictions of serum biomarker concentrations. If sufficiently 
accurate, genomic selection for metabolic stability offers the potential to provide permanent and 
incremental improvements in dairy cow health and welfare, thereby increasing farm profitability 
and sustainability.

MATERIALS AND METHODS
Phenotypes. A single serum sample was taken from of 1,393 Holstein-Friesian cows from 14 

farms in south eastern Australia between August 2017 and October 2018, according to the protocol 
described in Luke et al. (2019). All animals had been calved 30 days or less at the time of sampling. 
Sera were analysed for biomarkers of energy balance (BHBA and NEFA), mineral status (Ca and 
Mg), protein nutrition (urea and albumin) and immune status (globulins) by Regional Laboratory 
Services (Benalla, Victoria, Australia). Descriptive statistics of phenotypes are shown in Table 1.

Genotypes. Genotypes for the 1,393 animals used in this study were provided by DataGene Ltd. 
(Victoria, Australia). After editing, 47,162 single nucleotide polymorphism (SNP) markers were 
available for genomic analyses. A genomic relationship matrix (GRM) was constructed according 
to Yang et al. (2010).

Genetic parameters. Variance components were estimated for each trait using univariate linear 
mixed animal models in ASReml (Gilmour et al. 2015). In matrix notation, the model used was y = 
Xb + Zu + e (Model 1), where y is a vector of metabolite concentrations (BHBA, NEFA, Ca, Mg, 
urea, albumin, globulins), b is a vector of fixed effects of DIM, herd, parity, age and sample collection 
date, u is a vector of random genetic effects, and e is a vector of the random residual effects; and 
X and Z are incidence matrices for b and u respectively. It is assumed that var(u) = GRM σu

2, and 
var(e) = Iσe

2. Estimated variance components were then used to calculate the genomic heritability 
of each biomarker.

Genomic predictions. Genomic estimated breeding values (GEBV) were predicted using genomic 
best linear unbiased prediction (gBLUP), using variance components estimated from the univariate 
model (Model 1). The accuracy of genomic predictions was assessed in 2 ways. Firstly, empirical 
accuracy was calculated using 5-fold cross validation. This involved randomly dividing the reference 
population into 5 equally sized groups or folds. Data from 1 fold (approximately 20% of the reference 
population) were set aside as a validation set, and data from the remaining 4 folds (approximately 
80% of the reference population) formed the training set for model development. The resulting model 
was then used to predict GEBVs for animals in the validation set. This was repeated 5 times so that 
all animals appeared in the testing set once. Empirical accuracy was then calculated as the Pearson’s 
correlation between the predicted GEBVs and actual phenotype values, corrected for the fixed effects 
described in Model 1. Predicted accuracies of the true breeding values were calculated by dividing the 
empirical accuracies by the square root of the heritability of the trait. Secondly, theoretical accuracy 
was calculated as

where is the standard error of GEBV of individual i, and   is the genetic variance 
of each trait estimated from Model 1, adjusted for inbreeding by multiplying by the corresponding 
diagonal elements in the GRM for each individual (GRMii).
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RESULTS AND DISCUSSION
Estimated heritabilities for all traits, obtained from Model 1, are shown in Table 1. Heritability 

estimates were low for serum BHBA, NEFA, Ca, Mg and urea at 0.09 0.18, 0.07 0.19 and 0.18, 
respectively. Heritabilities of albumin, globulins and A:G were higher at  0.27, 0.46 and 0.41, 
respectively. Standard errors for all heritabilities were low (0.04 - 0.06). 

Heritability estimates were consistent with the literature for NEFA (Oikonomou et al. 2008), Mg 
(Tsiamadis et al. 2016), albumin, globulins and A:G (Cecchinato et al. 2018). We could find no reports 
of the heritability of serum urea concentration in the literature, however our results are consistent 
with the reported heritability of milk urea nitrogen (Mitchell et al. 2005), the concentration of which 
is linearly correlated with serum urea. 

The heritability of serum BHBA in our dataset was 0.09 ± 0.04, which is in excellent agreement 
with the findings of Weigel et al. (2017) (0.093 ± 0.045), slightly lower than those of van der Drift et 
al. (2012) (0.17 ± 0.06), and considerably lower than those of Oikonomou et al. (2008) and Cecchinato 
et al. (2018) (0.40 ± 0.06 and 0.37 ± 0.14, respectively). Oikonomou et al. (2008) demonstrated that 
the heritability of BHBA concentration is highest in immediately post calving and decreases rapidly 
over the first 7 weeks of lactation. In our study only 209 cows were in the first week of lactation at the 
time of sampling, and we expect that adding more data from animals in this highest risk period could 
improve heritabilities. Similarly, the heritability of Ca in our dataset was 0.07 ± 0.04, significantly 
lower than reported by Tsiamadis et al. (2016) who found that the heritability of serum Ca at days 1, 
2, 4 and 8 post-partum ranged from 0.23 (± 0.02) to 0.32 (± 0.03). Serum Ca concentrations drop in 
the 12 to 24 hours immediately post-calving before rapidly returning to normal physiological levels 
once homeostatic mechanism are restored, and it is likely that our low heritability estimate is the 
result of having sampled only 14 cows in this period of highest phenotypic variability. These results 
demonstrate the importance of careful trait definition when investigating the genetic parameters of 
health traits in the transition period.

Table 1. Number of samples (n), phenotypic means (µ) and standard deviations (σ), estimated 
genomic heritabilities (± standard errors), empirical reliabilities, and theoretical reliabilities 
of serum metabolic profiles

Phenotype n µ σ h2 re rt

BHBA 1393 0.48 0.22 0.09 ± 0.04 0.29 0.34
NEFA 1393 0.55 0.33 0.18 ± 0.05 0.36 0.41
Ca 1327 2.31 0.18 0.07 ± 0.04 0.20 0.31
Mg 1294 0.98 0.14 0.19 ± 0.06 0.28 0.41
Urea 1393 5.24 0.17 0.18 ± 0.05 0.30 0.41
Albumin 1294 32.8 2.95 0.27 ± 0.06 0.38 0.44
Globulin 1294 38.4 6.04 0.46 ± 0.06 0.40 0.51
A:G 1294 0.88 0.17 0.41 ± 0.06 0.40 0.49

Accuracies of genomic predictions resulting from univariate models are shown in Table 1. Empirical 
accuracies of the true breeding values were low to moderate (0.20 and 0.40), with more heritable 
traits having higher prediction accuracies. Theoretical accuracies, calculated from the standard 
errors estimated from Model 1, were higher than respective empirical accuracies, but the results of 
the 2 methods were in excellent agreement (R2 = 0.89). Although low, our results are consistent with 
a small female reference population and low to moderate trait reliabilities (Gonzalez-Recio et al. 
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2014). We expect that increasing the size of the reference population and refining trait definitions to 
maximise heritabilities should improve genomic prediction accuracies. Given the cost and logistical 
challenges of blood sampling large numbers of cows, one method for dramatically increasing the 
number of phenotypes may be to use mid-infrared spectroscopy of milk to predict serum biomarker 
concentrations. Other high throughput metabolomic methods such as nuclear magnetic reasonance 
spectroscopy may also offer potential for the discovery of novel biomarkers of health in milk and 
serum, which could help to further improve the genomic prediction accuracies. 

CONCLUSIONS
Our results show that genetic variance exists in the concentration of biomarkers of energy balance, 

protein nutrition, micromineral status and immune status in early lactation dairy cows. Genomic 
prediction accuracies were low, and while increasing the size of the reference population should 
theoretically improve accuracies, our results suggest that genomic prediction may allow identification 
of healthier cows that are less susceptible to diseases in early lactation.
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