
294

 Genomic Selection 1

APPLICATION OF GENOMIC SELECTION TO VIETNAMESE HOUSEHOLD 
DAIRY HERDS

N.N. Bang1,2, B.J. Hayes1, I.A.S. Randhawa1, R.E. Lyons1, J.B. Gaughan1, N.V. Chanh3, N.X. 
Trach2, N.D. Khang3 and D.M. McNeill1

1The University of Queensland, Gatton QLD 4343 and St Lucia QLD, 4067 Australia
2Vietnam National University of Agriculture, Hanoi, 131000 Vietnam

3Nong Lam University, Ho Chi Minh, 700000 Vietnam

SUMMARY
Household dairy farms (HDFs) account for most of the demand for animal breeding support in 

Vietnam, as they comprise 97% of the national herd. However, most do not have individual cow 
pedigrees or production data. Consequently, neither pedigree-based nor genomic selection (GS) methods 
have been used in Vietnam. The aim of this project was to establish a milk production database and 
assess the accuracy of GS for production traits using only a single test-day measurement (average of 
pm + am milking). Phenotypic data included milk yield (MILK, kg/d), milk dry matter (DM%), fat 
(FAT%), and protein (PRO%) contents of 345 lactating cows from 4 dairy regions, with 8 HDFs per 
region. The cows were genotyped using the Bovine 50K chip. GBLUP was used to estimate genomic 
heritability (h2) and evaluate the accuracy of GS per trait. Moderate heritabilities and accuracies of 
GS were detected for FAT% (h2 = 0.45, accuracy = 0.28), PRO% (h2 = 0.21, accuracy = 0.23), and 
DM% (h2 = 0.18, accuracy = 0.48). However, the heritability for MILK was very low (0.01) and the 
standard errors for all heritabilities and GS accuracies were high. These data suggest the potential for 
a single test-day to assess Vietnamese dairy cows for milk solid content, but not milk yield, using GS.

INTRODUCTION
The dairy industry in Vietnam is characterized by approximately 500,000 household dairy farms 

(HDFs) (Nguyen et al. 2016). The HDFs account for 97% of the national dairy herd (Trach 2017), 
and supply >80% of fresh milk production (Vinamilk 2017). Genotypes commonly used are European 
breeds (predominantly Holstein Friesian but also Jersey) crossed with tropically adapted breeds 
(Red Sindhi and Sahiwal) and local breeds (Yellow and Lai Sind) (Hayley 2010; Lam et al. 2010). 
Improving the genetic potential of dairy cows for milk production in HDFs is necessary to improve 
the national supply of fresh milk. However, a national breeding program for household dairy herds 
is yet to be officially implemented, even for basic traits such as milk yield, fat, or protein. A lack of 
individual cow pedigree and phenotypic data is the main reason for this.

Genomic selection (Meuwissen et al. 2001) is a recently proven method which is now widely 
used globally in dairy cow selection. This could be a suitable tool for dairy selection in Vietnam as 
it enables the selection of animals based on genomic markers, most commonly single nucleotide 
polymorphisms, or SNPs, without the need for pedigrees. However, whilst genomic selection does 
not require a pedigree, it does require a large number of animals with phenotypic data to allow the 
development of accurate prediction equations. These data are not easily obtained in Vietnamese 
HDFs. Such data is expensive to collect in terms of money, time, and labour, as it requires manually 
separating, weighing, and sampling milk from each cow at each milking time. Consequently, we 
aimed to estimate the genomic heritability for key milk production traits and to assess the accuracy 
of genomic selection on these traits using only a single test-day measurement for each.
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MATERIALS AND METHODS
Phenotype data. From August to October 2017, data from 345 lactating cows located on 32 HDFs, 

8 from each of four main dairy regions in Vietnam were recorded: Lam Dong – a south high-altitude 
province; Ho Chi Minh – a south low-altitude city; Son La – a north high-altitude province, and Ha 
Nam – a north low-altitude province. Each farm was visited twice to correspond with a milking in an 
afternoon and following morning. At these visits, individual cow age, number of lactations and days 
in milk were obtained by asking the farmer and/or checking their record books where possible, and 
tail hair was sampled from each lactating cow. The mean ± SD obtained for age (years), number of 
lactations, and days in milk of these cows were 4.5 years ± 1.7, 2.3 lactations ± 1.4, and 191.4 days 
± 120, respectively. A single day milk yield (MILK, kg/d) for each cow was obtained by weighing 
and summing the afternoon and the following morning milk yields. Milk samples for each cow were 
also collected at each milking, analysed at the Food Chemistry Lab (Vietnam National University of 
Agriculture) and averaged for milk dry matter (DM%, which is the percentage of all milk constituents 
excluding water), milk fat (FAT%), and milk protein (PRO%) contents. These data were used to 
calculate the yield of milk dry matter (DM, kg/d), fat (FAT, kg/d), protein (PRO, kg/d), and energy-
corrected milk (ECM, kg/d) using the equation of Tyrrell and Reid (1965).

Genotype data. Hair samples were genotyped by Neogen Australasia, The University of Queensland, 
Gatton. DNA was extracted from the samples using Sbeadex Livestock Kits (LGC Limited, 2017), 
and then genotyped using the GGP Bovine 50K chip, which assays 48,268 SNPs (Neogen GeneSeek 
Operations, 2018).

Quality control. R Software (R Core Team, 2016) was used for all data processing. The quality 
control on the genotype data removed 3,313 SNPs, which were either mitochondrial SNPs or unmapped 
SNPs, 5478 SNPs with call rates lower than 95%, 1980 SNPs with minor allele frequency lower than 
95%, and 633 SNPs with a heterozygosity deviating ±3 SD from the SNPs’ heterozygosity mean. One 
sample with a call-rate less than 95% was removed, in addition to three cows with heterozygosity 
deviating ±3 SD from the samples’ heterozygosity mean, 14 cows from fours farms with less than five 
lactating cows. Three cows had missing phenotypic data. The final data set for analysis comprised 
323 cows from 28 farms, genotyped for 36864 SNPs.

Genomic heritability and genomic breeding values. Univariate animal linear mixed models with 
common environmental effects (Mrode and Thompson 2013) were fitted using the GBLUP method in 
the R “Sommer package” and (Covarrubias-Pazaran 2019). The matrix notation describing the model 
was: y = Xb + Za + Wc + e, where: y was the vector of the traits observed, b was the vector of fixed 
effects (age, lactations, days in milk, days in milk squared), a was the vector of random additive 
genetic animal effects [a ~ N(0, Aσ2

a)], wherein A was the genomic relationship matrix derived from 
the SNPs, c was the vector of the random environmental farm effect (28 farms) [c ~ N(0, Iσ2

c)], e was 
the vector of residual random effects [e ~ N(0, Iσ2

e)], and X, Z, and W were the incidence matrices 
of the fixed effects, random additive genetic effects, and random environmental effects, respectively. 
Animal, random environmental and residual effects were assumed to be independently distributed. 
Heritability (h2) was estimated as the ratio of the additive genetic variance to total phenotypic variance 
[h2 = σ2

a / (σ
2

a + σ2
e)] (Falconer and Mackay 1996).

Accuracy of genomic selection. Due to the relatively small data-set, a 10-fold cross-validation 
approach was applied (Kang et al. 2017). Briefly, the entire data set, of 323 samples, were randomly 
partitioned into 10 subsets of equal size. Nine were used as a training set to determine genomic estimated 
breeding values (GEBV) for the retained validation set (10%). This process was repeated 10 times so 
that each subset was used only once as the validation set. The accuracy of genomic selection for each 
trait was determined by: Accuracy = r(𝐺𝐸𝐵𝑉, 𝑦)/h, where r was the correlation between GEBV and the 
original phenotype (y) of each validation set and h was the square root of genomic heritability of the trait.
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RESULTS AND DISCUSSION
MILK of the average household dairy cow in Vietnam was 17.87 kg/d (Table 1), which was much 

higher than other published survey estimates in Vietnam (14.0 – 16.0 kg/d) (Lam et al. 2010; Vu et 
al. 2016) but much lower than surveys in other developed countries such as Australia (22.9 kg/d) 
(DataGene 2017) or Asian countries such as Korea (27.8 kg/d) (Cho et al. 2013).

Table 1. Descriptive statistics for milk production traits in Vietnamese dairy cows

Trait n Mean SD Median Minimum Maximum IQR
MILK (kg/d) 321 17.87 6.28 17.8 5.3 36.65 8.75
DM% 323 12.22 1.22 12.1 9.46 16.36 1.63
FAT% 323 3.65 0.78 3.55 1.98 5.97 0.92
PRO% 323 3.30 0.48 3.25 2.29 5.64 0.61
ECM (kg/d) 321 16.75 5.23 16.44 5.31 33.23 7.43
DM (kg/d) 321 2.14 0.67 2.11 0.75 4.26 0.88
FAT (kg/d) 321 0.63 0.20 0.61 0.14 1.31 0.28
PRO (kg/d) 321 0.58 0.19 0.56 0.19 1.20 0.27

n: number of observations; SD: standard deviation; IQR: interquartile range; MILK: milk yield; DM: milk dry 
matter; FAT: milk fat; PRO: milk protein; ECM: energy corrected milk.

Genomic heritability estimates (Table 2) for DM%, FAT%, PRO%, DM, FAT, and PRO in our 
study ranged from 0.12 (PRO) to 0.45 (FAT%), which were moderate and similar to other comparable 
studies that used a far greater number of cows (Kim et al. 2009; Toghiani 2012; Cho et al. 2013). 
These studies presented heritability for FAT% ranging from 0.15 to 0.36, PRO% from 0.07 to 0.50, 
FAT from 0.28 to 0.52, and PRO from 0.26 to 0.34.  However, in the current study it should also 
be realised that the standard errors for these milk solid traits, except FAT%, were high. These high 
standard errors of the heritabilities could be because the single test-day measurements in our study 
were derived from the cows at wide ranges of lactations and days in milk, whereas the heritabilities 
for milk productions traits change widely throughout a lactation (Kim et al. 2009). 

The heritability for MILK in our study was also lower than expected (0.01) and with a high standard 
error (13 times the mean) when compared with other studies (0.15 to 0.46, Kim et al. 2009). The low 
heritability for MILK is likely due to high environmental and residual variances or measurement 
errors and so indicates a larger sample size would be required for a more acceptable estimate for that 
trait. Similarly, the low heritability for MILK was also the reason for the low heritability for ECM 
(0.08), as these was calculated from MILK.

The accuracies of GEBV from GBLUP for DM%, FAT%, and PRO% were moderate (0.23 to 0.48) 
and significantly different from zero, as the mean of accuracies for these traits were at least almost 
twice their standard errors. However, the accuracy for MILK in our study was inflated by its very low 
heritability (0.01) to become an unrealistically high number (>1). The accuracies of GS for other traits 
were unstable with moderate means (0.11 to 0.34), but with very high standard error (0.7 to 2 times 
the mean). To avoid inflated accuracy resulting from close family relationships between training and 
test animals, partitioning animal into training and validation sets should be based on family so that 
the highly related animals were in the same validation set (Pszczola et al. 2012). However, due to the 
lack of pedigree data, cows in our study were just randomly partitioned into training and validation 
sets and this could be a bias source in our GS accuracies.
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Table 2. Estimates of additive genetic variance (σ2
a), random environmental variance (σ2

c), resid-
ual variance (σ2

e), heritability (h2), correlation between GEBV and phenotype, and accuracy of 
genomic selection of milk production traits using univariate models

Trait σ2
a σ2

c σ2
e h2 ± SE Correlation ± SE Accuracy ± SE

MILK (kg/d) 0.16 9.84 18.35 0.01 ± 0.13 0.15 ± 0.08 1.60 ± 0.82
DM% 0.17 0.27 0.75 0.18 ± 0.14 0.21 ± 0.06 0.48 ± 0.14
FAT% 0.21 0.04 0.25 0.45 ± 0.15 0.19 ± 0.05 0.28 ± 0.07
PRO% 0.03 0.02 0.12 0.21 ± 0.14 0.11 ± 0.05 0.23 ± 0.12
ECM (kg/d) 1.09 7.51 12.78 0.08 ± 0.14 0.06 ± 0.11 0.21 ± 0.41
DM (kg/d) 0.04 0.11 0.21 0.15 ± 0.14 0.13 ± 0.09 0.34 ± 0.24
FAT (kg/d) 0.005 0.009 0.019 0.19 ± 0.15 0.05 ± 0.08 0.11 ± 0.18
PRO (kg/d) 0.002 0.012 0.016 0.12 ± 0.14 0.08 ± 0.08 0.24 ± 0.25

Abbreviations of traits as in Table 1; SE: standard error

CONCLUSIONS
This study suggests that genomic selection using the GGP Bovine 50K chip and a single test day 

measurement could potentially be applied in Vietnam to the milk solid traits DM%, FAT%, and CP%, 
but not to milk yield traits. However, a larger sample size is recommended to confirm these findings. 
The very low estimation of the heritability of MILK could give misleading results when the accuracy 
of genomic selection is assessed.
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