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SUMMARY
In beef cattle, genomic selection has promising benefits for the improvement of carcass traits such 

as meat quality, because estimated breeding values can be obtained without sacrificing the selection 
candidates. The objective of this study was to assess genomic prediction accuracy for meat quality 
traits in Hanwoo beef cattle. Genomic and phenotypic data from 2,110 Hanwoo steers were used 
to predict genomic estimated breeding values for marbling score, meat texture and meat colour. The 
accuracy of the genomic breeding value was assessed by using cross-validation for two scenarios; 1) 
when the reference population of animals with phenotype and genotype included family members and 
2) when family members were excluded. The mean cross-validation accuracy of genomic predictions 
for marbling score were 0.32 and 0.46 for the distantly and closely related validations set, respectively. 
These accuracies were 0.28 and 0.39 for meat texture and 0.19 to 0.31 for meat colour. The results 
indicated that the accuracy of prediction was affected by the heritability of the trait and the degree of 
relationship between reference and test population. These results were based on a small sample size 
and should be validated with a larger data set.

INTRODUCTION
Genomic prediction uses DNA information to produce genomically enhanced estimation of breeding 

values (GBV) and it is increasingly applied in breeding programs for livestock species. The Genome-wide 
SNP based genomic prediction has the most benefit for traits that are difficult to measure, expensive to 
record or that are measured late in an animal’s life compared to pedigree-based estimates of breeding 
value (Meuwissen et al. 2001). Thus, genomic information can be applied to select young animals for meat 
quality traits without sacrificing the selection candidates, which is an important advantage of genomic 
selection in beef cattle. Prediction accuracy of GBV is an important parameter in designing breeding 
programs with genomic selection. The accuracy of genomic prediction mainly depends on the size and 
the diversity of the reference population, the heritability of the trait, the linkage disequilibrium (LD) 
between SNP and QTL, and the methods that will be used for prediction (Daetwyler et al. 2012). The 
accuracy also depends on the relationship between the reference population and the target animals to be 
predicted (Clark et al. 2012). The accuracy of GBVs should be validated before implementing a genomic 
selection-breeding program and the most common way to assess GBV accuracy is using cross-validation.

Several genomic prediction studies have been reported for meat quality and carcass traits on various 
beef cattle around the world (Chen et al. 2015; Magalhães et al. 2019). However, few have included 
indigenous Korean beef cattle (Hanwoo) and prediction accuracies may differ between breeds due to 
the effective population size (Ne) differences among breeds. As a result, there is no comprehensive 
study on assessment of genomic prediction accuracy for marbling score, meat texture and meat colour 
in Hanwoo cattle. Therefore, the objective of this study was to assess genomic prediction accuracy 
for meat quality traits in Hanwoo cattle.
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MATERIALS AND METHODS
Data structure and quality control. Phenotypic data from 2110 Hanwoo steers were used and all 

individuals were slaughtered at the same age (24 months). Details of feeding, management practices 
and traits measurements are reported elsewhere (Bhuiyan et al. 2018). Marbling score (MS) was 
assessed and scored (1 to 9 scale). Similarly, meat colour (MC) was assessed and graded from very 
light red (grade 3) to dark red (grade 7), and meat texture (MT) was evaluated on a scale from very 
fine (grade 1) to coarse (grade 3). All animals with phenotypic data were genotyped with the 50k SNP 
Chip (Illumina Bovine SNP50 BeadChip; Illumina, San Diego, CA). SNPs that had a minor allele 
frequency (MAF) less than 1% were removed as well as those with p-values for Hardy-Weinberg 
equilibrium (HWE) less than 0.1%. Finally, 40197 SNPs passed the quality control thresholds and 
were used for the analysis.

Statistical model and data analysis. Genomic best linear unbiased prediction (GBLUP) was used 
to predict the breeding value for each trait. The genomic relationship matrix (G) (Yang et al. 2010) 
was used in a univariate linear mixed model to estimate the GBV and heritability. The model was:  
y = 𝐗𝐛 + 𝐙𝐮 + 𝐞, with b being a fixed effect of kill group and u was a random additive genetic effect 
of the animal with var(u)=G. ASReml version 4.1(Gilmour et al. 2015) was used for the data analysis.

Cross-validation. Two 10-fold cross-validation (CV) scenarios were used. In the first scenario, 
2110 steers were divided into 10 folds using random sampling of individuals (RCV). Each of the 
folds (n=211, 10%) was used as validation whereas the other folds (n=1,899, 90%) were used as the 
reference population. In the RCV scenario, there was a relatively close relationship between validation 
and the reference population, because half-sibs of animals in the validation set could be present in the 
reference population. In the second CV scenario, the 2110 steers were divided into ten folds based 
on family-based sampling techniques (FCV). Steers in every ten subsets came from 25 sires and the 
number of steers in each validation data set was varied from 179 to 238. Thus, in the FCV scenario, 
the validation steers did not have any siblings in the corresponding reference population, indicating 
that there was a relatively distant relationship between validation and reference population. Finally, 
the accuracy of GBV was assessed using the Pearson product-moment correlation between GBV and 
corrected phenotypic value (𝑦𝑐) divided by the square root of heritability, where 𝑦𝑐 was the phenotypic 
value corrected for the kill batch effect. The bias in the variance of the estimated breeding values 
was measured through the regression coefficient (slope) of the corrected phenotypes on the estimated 

predicted breeding values. . 
Summary statistics for meat quality traits Mean, minimum (Min), maximum (Max), standard deviation 
(SD) and coefficient of variation (CV%) are shown in Table 1.

Table 1. Summary statistics for the three meat quality traits in the 2110 Hanwoo steers
Traits Sample size Min Mean SD Max CV%
Marbling score 2110 1 3.23 1.50 9 46.4
Meat texture 2110 1 1.65 0.50 3 30.3
Meat colour 2110 3 4.8 0.55 7 11.5

RESULTS AND DISCUSSION
Assessment of genomic prediction accuracy. The estimated heritabilities for MS, MT and MC 

are shown in Table 2, with traits with higher heritability having higher prediction accuracy (Figure 
1). In the RCV scenario, MS had the highest (0.46) prediction accuracy, with accuracies being 0.39 
for MT and 0.31 for MC. In the FCV scenario, the accuracy of genomic prediction for MC was lower 
(0.19) compared with 0.32 for MS and 0.28 for MT. As shown in Table 2, the RCV scenario was more 
accurate and less biased than the FCV scenario for all studied traits.
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Figure 1. Accuracies of genomic prediction for the three studied traits with random and  
family-based cross-validations

Table 2. Slope of genomic predictions and heritability for the studied traits

Traits MS MT MC
Slope RCV 0.92±0.11 0.90±0.07 0.77±0.16
Slope FCV 0.88±0.11 0.88±0.15 0.70±0.24
Heritability 0.46±0.05 0.30±0.05 0.15±0.04

In the current study, the empirical accuracy based on FCV were 14, 11 and 12% lower than those 
based on RCV for MS, MT and MC traits, respectively. A similar study in chicken for the traits 
associated with growth showed that FCV yielded lower genomic prediction accuracy than RCV (Liu et 
al. 2017). In our study, the accuracy of genomic prediction increased with increasing the relationship 
between validation and reference population. Similarly, (Clark et al. 2012) found that the prediction 
accuracy was improved as the degree of relationship between the validation and reference population 
increased. The way of a data splitting strategy for cross-validation affects prediction accuracy. For 
instance, the RCV does not consider the data structure such as age, family and relatedness, while 
FCV increases relationships within a group but decreases between groups. Thus, the genetic distance 
of the reference population from the group of selection candidates determines the accuracy of GBV.

Reports on the accuracy of genomic prediction for beef cattle are limited and are usually based 
on small data sets. A previous study in Hanwoo cattle showed that the genomic prediction accuracy 
for IMF varied from 0.37 to 0.45 based on different GRMs (Choi et al. 2017) using 778 genotyped 
Hanwoo steers. The study used 5- fold family-based cross-validation techniques and sampled 706 and 
72 steers into reference and validation data sets, respectively. The genomic prediction accuracies for 
meat quality traits have also been studied in other beef cattle breeds. Chen et al. (2015) reported an 
accuracy of 0.37 for genomic prediction of marbling score in Angus cattle using 543 genotyped steers. 
A recent study (Magalhães et al. 2019) reported a prediction accuracy of 0.40 for a trait associated 
with meat colour in Nellore cattle using 5000 genotyped animals. In that study, the animals were 
divided into two groups for reference and validation sets based on year of birth and animals born in 
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the last year were used as a validation population.
In general, it is difficult to compare the accuracies from different studies because of differences in 

trait heritabilities, training and validation set sizes, data splitting strategies to reference and validation, 
and statistical methods to estimate marker effects. Likewise (Luan et al. 2009; Daetwyler et al. 2012) 
established that the data splitting strategies to reference and validation affected prediction accuracy.

Furthermore, different breeds have different population structure and vary in diversity. In a 
less diverse population with small effective population size (Ne), animals share large chromosome 
segments, which lead to relatively high prediction accuracy. In the current study, moderate (0.31 to 
0.46) prediction accuracies were found in the RCV scenario for the studied meat quality traits. The 
small sample size could affect the prediction accuracy in our study. Therefore, the obtained prediction 
accuracy in the current study should be confirmed with a large sample size prior to starting the intended 
breeding program in Hanwoo cattle.

CONCLUSIONS
Genomic predictions for meat quality traits in beef cattle are potentially valuable because it can 

be applied early in life and do not require potential selection candidates to be sacrificed. Our study 
shows that marbling score and meat texture traits had higher genomic prediction accuracy, suggesting 
that selection for these traits may improve meat quality in Hanwoo cattle. The accuracy of genomic 
prediction was affected by the heritability of the studied traits and the method of sampling the training 
and validation sets, which affected the degree of relationship between validation and reference 
populations. Overall, the current estimated genomic prediction accuracy could be affected by the 
small sample size used in the study and should be confirmed with large sample sizes.
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