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﻿Detection of Causal Variants
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SUMMARY
Fertility traits are of paramount importance for humans and cattle. In cattle, they are one of the 

main profit drivers in the industry. Using data from genome-wide association studies (GWAS) from 
both species, we estimated the effect of genes associated with age at menarche in women (AaM) in 
the variance of age at puberty (AaP) in tropically adapted beef heifers. We found that variants within 
100kb of AaM bovine orthologous genes explained 11.2% of the additive genetic variance of heifers 
AaP in the biggest cohort analysed. This represented about twice the variance explained by random 
gene-sets of similar size and number of SNPs (P<0.2). Our work suggests some potential of cross-
species analyses to increase the cattle industry’s productivity.

INTRODUCTION
Thanks to the recent advances in biomedical technology, the genetic basis of fertility in humans 

is better known now than ever. For instance, the biggest GWAS for female fertility to date with 
~370,000 women, Day et al. (2017), reported hundreds of genomic loci associated with AaM in 
women, a female complex trait that is a milestone in pubertal development. An interesting question 
is, whether we can use the information coming out of the extremely powerful GWAS in humans to 
improve genomic predictions for related traits in cattle?

Given the evidence for genetic control of complex traits across mammalian species (Pryce et al. 
2011; Bouwman et al. 2018), we hypothesised that genetic factors contributing to variation between 
individuals for age at puberty/age at menarche will be shared across humans and cattle. In humans, the 
heritability of AaM was estimated to be 0.32 (0.03) (Day et al. 2017). In cattle, AaP has been shown 
to be moderately to highly heritable in tropically adapted breeds (Johnston et al. 2009; Corbet et al. 
2018) with heritabilities ranging from 0.22 (0.07) to 0.57 (0.12) for Santa Gertrudis and Brahman 
breeds respectively. Using bovine orthologous of genes associated with AaM, we estimated their 
contribution to the additive genetic variance of age at puberty (AaP) in heifers.

MATERIALS AND METHODS
Animals, genotypes and phenotypes. We used published data from several heifer populations: 

Beef Cooperative Research Centre for Beef Technology Brahman and Tropical Composite (CRC BB 
and CRC TC, respectively) and the Queensland Smart Futures population (Smart Futures). These 
herds contained heifers from several tropical beef breeds and were genotyped with the BovineSNP50 
(CRC BB and CRC TC) and Geneseek GGP-LD array (Smart Futures). The Smart Futures heifers 
consisted of animals from three breeds: Brahman (979), Santa Gertrudis (1813) and Droughtmaster 
(914). Complete details for these animals and genotypes have been published elsewhere (Johnston 
et al. 2009; Corbet et al. 2018). In total, we used 3695, 960 and 868 animals from the Smart Futures, 
CRC TC and CRC BB herds. Genotypes were imputed twice up to 728,785 SNPs using Fimpute 
(Sargolzaei et al. 2014) and then to whole genome sequence using Minimac3 (Das et al. 2016). The 
phenotypes were age in days at first corpus luteum (AGECL) and corpus luteum score (CLscore) 
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at ~600 days for the CRC and Smart Futures cohorts, respectively. The AGECL is a count variable 
and CLscore is an ordinal variable ranging from 0 “infantile tract” to 5 “pregnancy > 10 weeks”. 
These two heifers AaP phenotypes, CLscore and AGECL, exhibit a very high genetic correlation 
(-0.83(0.09), Engle et al. 2019). 

Bovine orthologous AaM genes. Using coding variation (nonsynonymous SNPs), associated 
expression in neural tissues (eQTL) and chromatin interaction data (Hi-C), Day et al. (2017) implicated 
233 protein-coding genes in the regulation of AaM in women. We mapped these genes to the UMD3.1 
bovine genome using Biomart Ensemb 94 and filtered them out by conservation status (orthology 
confidence=1 and gene identity > 60%), rendering a total of 205 highly conserved orthologous AaM 
genes in the bovine genome. Then, we located variants (SNPs and INDELs) in or around + 100kb 
using imputed sequence data from the CRC BB, CRC TC and SMF cohorts.

Figure 1. Gene size distribution (deciles) for bovine orthologous genes for age at menarche 
(AaM) in women

Statistical analysis. We estimated the variance of heifers’ AaP explained by orthologous AaM 
genes using a model with two genomic relationship matrices (GRMs) constructed from the imputed 
to sequence genotypes described before. The first GRM is constructed from variants in or within 
100kb of AaM genes and the second GRM from the remaining variants in the bovine genome. The 
model included additional continuous and categorical covariates as follows:

where y is a vector of phenotypes, μ the overall mean, 1n is a vector of 1s, age is a vector with the 
heifers’ age fitted as a continuous covariate, pc1 and pc2 the first and the second principal components 
(derived from the GRM), cgroup is a vector of contemporary groups that includes with herd, year, and 
season and is fitted as categorical covariate. g1 and g2 are vectors of random effects for the variants in 
or within 100kb of AaM genes and the remaining ones in the bovine genome with g1 ~ N(0, G1s

2
g1) 

and g2 ~ N(0, G2s
2

g2). e is a vector of random residuals distributed e ~ N(0, s2
e). G1 and G2 denote 

the corresponding GRM matrices constructed following the first method of VanRaden (2008) and 
s2

g1, s
2

g2, s
2
e the corresponding genetic and error variances. We fitted the model separately for each 

cohort using GCTA (Yang et al. 2011).
In order to provide an appropriate comparison for the AaM genes, we also estimated the variance 

explained by 100 random gene-sets of similar length and SNP number, e.g. we performed a stratified 
random sampling by quantiles of gene size and number of SNPs, and ran a randomized permutation 
test for the percentage of AaP variance explained by AaM genes.
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RESULTS AND DISCUSSION
Out of a total of 28.9 million imputed to sequence variants across all cohorts, there were 339,669 

variants within +/- 100kb from 205 bovine orthologous AaM genes. The number of variants varied 
slightly within individual cohorts. Note also that in terms of gene physical size, AaM genes are over-
represented in the lower deciles and thus tend to be smaller in size than the rest of protein-coding 
genes in the bovine genome (Figure 1).

Variants in AaM genes explained 2.5% phenotypic (11.2% genetic) variance of heifers AaP in the 
biggest cohort, Smart Futures (Table 1). This represented about twice the mean variance explained 
by variants in random gene-sets (1.2% phenotypic and 5.6% genetic) that had on average 379,325 
variants. This result however did not reach significance in the randomized permutation test (P<0.2) 
(Figure 2). With regard to the CRC cohorts, variants in AaM genes explained negligible percentages 
when compared with variants in random gene-sets.

Table 1. SNP based heritability (h2) partition for cohorts included in the meta-analysis

Cohort
Smart Futures CRC TC CRC BB

Component h2 se h2 se h2 se
AaM genes: V(G1)/Vp 0.025 0.019 0.005 0.059 0.015 0.058
Remaining: V(G2)/Vp 0.195 0.035 0.393 0.103 0.446 0.108
Overall: V(G1)+V(G2)/Vp 0.220 0.031 0.398 0.085 0.461 0.092
V(G1)/Vp for random gene-sets* 0.012 0.001 0.034 0.009 0.022 0.009

*Mean for 100 gene-sets (379,325 variants on average).

Figure 2. Randomised permutation test results for the Smart Futures cohort. Variance in heifers 
age at puberty (AaP) explained by age at menarche (AaM) genes (red line, 339,669 variants), 
and random gene-sets of similar size to AaM genes. Dotted lined displays the mean for 100 
random gene-sets (379,325 variants on average)
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Note that overall h2 estimates by cohort: 0.220(0.031), 0.398(0.085), and 0.461(0.092) for Smart 
Futures, CRC TC and CRC BB, respectively, are consistent with previous estimates from published 
studies (Johnston et al. 2009; Corbet et al. 2018). In terms of individual genes, there were four genes 
in the AaM set (ZNF654, LEPROT, CCDC40, CLUAP1) that reached significance (P<10-4) in the 
meta-analysis of AaP GWAS across the three cohorts. In humans, these genes are also associated with 
haemoglobin concentration (ZNF654), morbid obesity (LEPROT), blood protein levels (CCDC40), 
vital capacity and leukocyte count (CLUAP1) (Stelzer et al. 2016).

Taken together these results suggest that women’s AaM genes are also associated with a similar 
phenotype in a different species, in this case fertility phenotypes in tropically adapted beef heifers. 
Importantly, however, is the issue of power for this complex trait as a large number of animals was 
required to pick up this signal, e.g. association was only presented in the biggest cohort with 3695 
animals. An interesting extension would be to combined both CRC cohorts (Brahmans and composites) 
and performed the analyses presented here on this combined dataset.

CONCLUSIONS
Variants in AaM genes explained 2.5% phenotypic (11.2% genetic) variance of tropical beef heifers’ 

AaP in the biggest cohort analysed here. This is about twice the variance explained by similar random 
gene-sets, although this result is not statistically significant (P<0.2), and the variance explained in the 
other cohorts was not different from zero. Some genes affecting AaM were also significant for AaP 
in heifers (P<1 x 10-4). Our work highlights the potential of cross-species analyses to increase the 
industry’s productivity. Further research in terms of inclusion of variants in AaM genes in genomic 
prediction models is needed to achieve this potential.
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