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SUMMARY

The genomic relationship matrix (GRM) routinely constructed for single-step genomic BLUP
analyses is known to contain breed structure, observable via principal component analysis, while the
pedigree relationship matrix uses coefficients that are constant between known relatives regardless
of breed or genetic group membership. This paper explores the effect of using allele frequencies for
cach breed or genetic group when calculating the GRM to reduce breed or genetic group structures
in the GRM in the presence of pedigree based genetic groups fitted as random effects. We
investigated the effect of using a breed-adjusted GRM on estimated breeding values, showing cross-
validation results, genetic trends and estimated breeding value accuracies. Cross-validation results
across breed showed a slight increase in EBV accuracy using a breed-adjusted GRM, 0.220 + 0.068
compared to a non-adjusted GRM, 0.206 £ 0.071. Genetic trends calculated from estimated
breeding values (EBVs) using a breed-adjusted GRM were more closely aligned to those estimated
using a pedigree-only model compared to a non-adjusted GRM. These results show that using a
single set of allele frequencies in a GRM with a diverse number of breeds can result in biased
breeding values and biased genetic trends relative to those obtained from pedigree model including
breed groups.

INTRODUCTION

With the transition of routine genetic evaluations from pedigree- or genomic blending-based
approaches, to single-step (Legarra ef al. 2014), the alignment of the GRM to the pedigree-based
numerator relationship matrix (NRM) has become a focus of research interest when genetic groups
are present and included in the model as separate random effects. This research focus is, in part, due
to the impact that any misalignment can have on genetic trends (Meyer ef al. 2018). Scalar
adjustment parameters have been suggested (Vitezica ef af. 2011; Christensen 2012) to align the
NRM and GRM, while leaving the general structure inherent in the GRM intact. The *metafounders’
framework (Legarra ef al. 2015; Garcia-Baccino ef al. 2017) was suggested as a method for
modifying the NRM to be in better alignment with the GRM and in doing so, replacing genetic
groups (Westell er al. 1988) that are currently used for managing missing pedigree. While the
metafounders framework is a promising method for handling misalignment of the NRM with the
GRM and genetic groups, it is challenging to implement in routine analyses. That approach assumes
that each metafounder has genotyped animals in their forward pedigree, which may not occur in
practice, and may require modifications to the rules currently used to assign animals to metafounders
or genetic groups. An alternative method is to align the GRM to the NEM by removing breed/genetic
group structure from the GRM, as described by Makgahlela er a/. (2013). This paper aims to examine
the impact of using a breed-adjusted GRM (hereby BGRM) in routine single-step genomic BLUP
analyses on cross-validation correlations and regression slopes of evaluations on adjusted
phenotypes and genetic trends compared to a standard non-adjusted GRM (hereby SGRM).

* A joint venture of NSW Department of Primary Industries and the University of New England
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MATERIALS AND METHODS
A SGRM using the method of Yang ef al. (2010) can be constructed as W = J%; G =

ww' . . . . . .
- where M is the marker matrix of dimensions animals by markers, p is the allele frequency of

the animals in M and m is the number of markers in M. The above equation was extended by
Makgahlela et al. (2013) for allele frequencies that vary by breed (BGRM). A breed proportion
matrix, @, was calculated from genotypes using BreedComp (Boerner ef al. 2018), and the allele
frequency for each breed in @ was calculated as F, allowing the method of Yang ef al. (2010) to be
extended for each colummn in the Q matrix. The expected allele frequency for each animal based on
its breed proportion is then estimated as P = QF, and thus W;; = My - 2Py and G = WW' /m.
2P(1-Pyj)

To examine the differences in EBVs using a pedigree-only relationship matrix or these two GRM
construction methods in single step analyses utilising pedigree based genetic groups implemented
as random efTects, multi-trait BLUP analyses were performed on maternal reproduction data from
sheep. The EBVs (including genetic group estimates) from these analyses were compared via genetic
trends and EBV correlations for animals born afier 2013, The data consisted of approximately 2.4
million animals in the pedigree, with 11,761 of these genotyped and phenotypes collected on up to
15 traits. Reproduction traits that were included in the analysis were: fertility of yearling (ycon) and
adult (con) ewes, litter size of yearling (yls) and adult (ls) ewes, rearing ability of yearling (yera)
and adult (era) ewes, and maternal behaviour score of adult ewes (mbs). Other traits included in this
analysis were: post-weaning eye muscle depth (pemd), post-weaning carcase fat (pef), post-weaning
scrotal circumference (psc), yearling scrotal circumference (ysc), pre-joining weight of post-
weaning (pwt) and adult (awt) ewes, and pre-joining condition score of yearling (yes) and adult (cs)
ewes. The number of phenotypes per trait varied, ranging from 595 978 (1s) to 1,746 records (ycs).
The genotypes represented a variety of breeds, dominated by Border Leicester, Coopworth,
Corriedale and crossbred animals, including Border Leicester-Merino cross sheep. BLUP analyses
were performed using each of these three relationship matrices assuming commeon variance
components, and included random effects for genetic groups. Further model details can be found in
Bunter et al. (2019). Forward cross-validation was performed. Phenotypes for animals born afier
2013 were removed from the analysis and breeding values were estimated for these animals from
the remaining phenotypes. This year of birth was chosen to ensure sufficient reproduction records
were included in the wvalidation set, though some traits still had few validation phenotypes.
Phenotypes recorded afier 2013 were then adjusted for the relevant fixed effects to calculate
correlations with the estimated breeding values, with phenotypes re-scaled by the square root of the
heritability. For each trait, adjusted phenotypes were regressed on the EBVs: slopes less than one
indicate over-prediction (i.e. bias) and slopes above one indicate under-prediction, The mean and
standard deviation of the correlations and regression slopes across all 15 traits was calculated,
weighted by the number of animals with phenotypes included in the validation set. Traits with fewer
than 300 observations (n=4) were not included in these means.

RESULTS AND DISCUSSION

Comparing the breeding values of all 15 traits for animals born after 2013 estimated using the
SGRM with those from a pedigree only analysis, the mean correlation was 0,988, The minimum
correlation was 0.977, while the maximum was 0.997, The same correlations calculated using a
MGRM were 0.996, with a minimum correlation of 0.993 and a maximum of 0.999, Within Border
Leicester sheep, the mean correlation for a SGRM and a MGRM changed from 0.973 to 0.992,
respectively, within Coopworth sheep the mean correlation changed from 0.978 to 0.999 and within
Corriedale sheep the correlation increased from 0.983 1o 0.999. The genetic trends for the four traits
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showing the lowest correlations between EBV's from pedigree and SGRM models are presented in
Figure 1. These correlations and genetic trends show that using the BGRM produced breeding values
and trends that were closer to those previously observed using the NRM and breed group effects.

The mean correlations from forward cross-validation estimated using NRM, SGRM and BGRM
were 0.196 + 0.0824 | 0.206 + 0.071, and 0.220 + 0.068, respectively. The mean regression
slopes estimated using NRM, SGRM and BGRM were 0.910 + 0.447,1.004 + 0.418 and 0.987 +
0.370, respectively. The correlations and regression slopes by traits with sufficient data to make
inference are presented in Table 1. These results indicate that the BGRM resulted in slightly higher
cross-validation accuracies at the expense of a negligible increase in bias over the SGRM EBVs, A
stronger bias was found in the NRM EBVs than for either of the single-siep analyses. While the
standard deviations were large across traits for both accuracies and biases, together these set of
results suggest that correcting the relationship values of the GRM for breed can produce higher
accuracy and lower bias in EBVs.
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Figure 1, Genetic trends for the four traits showing the lowest correlation between EBVs
when using a single breed GRM. EBVs have been scaled by dividing by the genetic standard
deviation

The implementation of the method presented by Makgahlela ef al. (2013) for a breed-adjusted
single-step genomic evaluation has some advantages compared to an approach using metafounders.
Firstly, the adjustment of the GRM is a simpler modification to the single-step relationship matrix
than that required by metafounders and allows any current genetic grouping structure (pedigree-
derived genetic groups for example) to exist alongside the modified relationship matrix. Adjusting
the GRM is also simpler when breeds or genetic groups have no genotyped animals in their pedigree.
Implementing a BGRM in a single-step analysis requires that genetic groups are also fitted in the
model as they have for NRM based analyses. These genetic groups need to align with the breeds
that were used in the construction of the GRM. There are situations where the implicit breed
structure in the GRM has advantages, e.g. predicting breeding values for animals without pedigree
across genetic groups, with metafounders allowing this structure to be imposed over the whole
NRM.

Genetic groups or metafounders both require the assignment of animals into pre-defined group
structures. Methods for creating the most parsimonious grouping structures require further
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investigation, minimising the number of groups requircd while maintaining cnough groups for
predictive purposcs. The addition of genotypes can aid in this proccss.

CONCLUSIONS

In this paper, we show that the method presented by Makgahlcla er al. (2013) reducces the breed
structurc implicit ina GRM constructed from multiple breeds, resulting in a GRM that is numerically
morc similar to the NRM. This change results in genctic trends that align closer with those scen from
pedigree-only modcls. The BGRM resulted in slightly higher average cross-validation accuracics
with similar biascs, and less biascd than pedigree alone, compared to BLUPs performed using a
GRM constructed from a single sct of allele frequencics.

Table 1. Tablc of forward cross-validation accuracics obtained from BLUP modecls using an
NRM (r_NRM), a single-breed GRM (r_SGRM) and a multi-breed GRM (r_BGRM) and the
corresponding biases, h_NRM, b_SGRM and b_BGRM. ‘n’ indicates the number of animals
in the validation sct

Trant n r NRM r_SGRM r_BGRM b NRM b_SGRM b BGRM
yeon 618 0.10 0.14 0.16 0.59 0.83 0.95
con 885 0.11 0.12 0.18 0.53 0.62 0.87
yls 627 0.18 0.20 0.17 0.79 0.84 0.78
Is 1,801 0.14 0.14 0.16 0.69 0.74 0.79
yera 377 0.22 0.21 0.25 1.84 2.05 2.05
era 1,583 0.34 0.27 029 2.00 1.90 1.72
pemd 3.476 0.15 0.17 0.18 0.74 0.83 0.79
pel 3.467 0.21 0.24 025 0.94 1.13 1.10
pwi 431 0.25 0.27 0.20 0.80 0.80 0.83
awl 943 0.32 0.34 0.35 0.71 0.81 0.77
cs 545 0.34 0.34 0.34 1.08 1.20 1.16

Abbreviations: ‘ycon” and ‘con’: fertility of yearling and adult ewes, respectively, ‘yls® and ‘Is’: little size of
yearling and adult ewes, respectively, ‘yera” and ‘era’: rearing ability of yearling and adult ewes, respectively,
pwt’ and ‘awt’: pre-joining weight of post-weaning and adult ewes, respectively, ‘cs’: pre-joining condition
score of adult ewes,
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