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SUMMARY
Mixed model equations encountered in pedigree and genomic analyses are typically solved using 

an iterative preconditioned conjugate gradient algorithm. That algorithm requires a preconditioning 
matrix chosen to improve the condition number of the problem. Convergence is very fast when an 
appropriate preconditioning matrix is used, but some equations fail to converge unless an effective 
preconditioner can be found, and that is not always straightforward, especially in genomic analyses. 
Some preconditioning and absorption options are compared in the context of a national cattle eval-
uation for growth traits using a multi-trait single-step marker effects model. It is demonstrated that 
computing time is largely determined by the number of iterations required to obtain convergence, 
rather than the complexity of the equations or preconditioning. Further, a reliable convergence statistic 
for general applications remains problematic.

INTRODUCTION
Mixed linear models that include fixed effects other than the mean, and random effects other than 

the residuals, are fundamental to theoretical and applied aspects of animal breeding. Most genetic 
improvement programs rely on routine multiple-trait prediction that involves finding the solution to 
sets of simultaneous equations we refer to as the mixed model equations (e.g. Henderson, 1975) that 
are typically large, sparse, symmetric and positive semi definite. Early applications of national evalu-
ation programs explicitly formed every contribution to the left- and right-hand sides of the equations, 
frequently after absorbing fixed effects such as herd-year-season, and then solved the resultant sparse 
set of equations using Gauss-Seidel (GS) iteration (e.g. Van Vleck and Dwyer 1985). Later applications 
avoided the accumulation of every element of the left- and right-hand sides and instead used iteration 
on data (Schaeffer and Kennedy 1986) to recreate matrix and vector elements as required. Gauss-Se-
idel iteration was replaced by the sometimes problematic but typically much faster approach of pre-
conditioned conjugate gradient (PCG) (Berger et al. 1989; Stranden et al. 1999; Tsuruta et al. 2001).

A nice property of GS iteration is that every iteration results in a solution that when multiplied by 
the left-hand side coefficient matrix will more closely agree with the right hand side vector. However, 
GS can be slow to converge, and convergence tends to slow down with every subsequent iteration. In 
contrast, PCG tends to converge quite quickly, but in finite arithmetic the system is prone to rounding 
errors and to loss of conjugacy that can result in successive iterations being poorer fits than previous 
iterations. Performance is sensitive to the condition number of the equations, which can be dramatically 
influenced by the choice of preconditioner matrix. Calculating the perfect preconditioner matrix for 
a given problem is more effort than solving the equations. Finally, it is hard to know exactly when 
to stop iterating and accept the current iteration as a practical solution to the mixed model equations.

The adoption of single-step models for national evaluation that include both genotyped and 
non-genotyped animals in the same evaluation has created some additional challenges in obtaining 
PCG solutions. First, some submatrices of the mixed model equations are no longer sparse, and  
second, the equations are more likely to lose conjugacy than mixed model equations based on pedigree 
relationship matrices, at least when historically used diagonal or block preconditioners are applied. 
The objective of this study was to compare the performance of some alternate PCG implementations 



251

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:250-253

in the context of a multiple-trait single-step national cattle evaluation.

MATERIALS AND METHODS
The American Hereford Association runs its genetic evaluation on a weekly basis that includes 

performance and genotypic data along with pedigree records comprising about 2.5 million US and 
Canadian Hereford cattle. The complete evaluation comprises nine multiple-trait single-step marker 
effects models (Fernando et al. 2016) to publish 16 different EPD (Golden et al. 2018). Mixed model 
equations are solved using PCG, then the PCG solutions are used to seed parallel Markov chain 
Monte Carlo analyses using single-site Gibbs sampling to estimate prediction error variances (PEV) 
to calculate reliabilities, and PEV for contrasts between groups of one or more animals (Garrick et 
al. 2018). This paper reports the PCG solving performance for the multiple trait growth model. The 
model equations for each correlated trait in that analysis are

  y  B   =  J  B    j  B   +  X  B    b  B   +  P  B    p  B   +  Z  B    a  B   +  M  B    m  B   +  Z  B  n   u  B  n  +  Z  B  g   S  B    α  B   +  e  B   
  y  W   =  J  W    j  W   +  X  W    b  W   +  P  W    p  W   +  Z  W    a  W   +  M  W    m  W   +  Z  W  n    u  W  n   +  Z  W  g    S  W    α  W   +  e  W   

  y  G   =  J  G    j  G   +  X  G    b  G   +  Z  G    a  G   +  Z  G  n    u  G  n   +  Z  G  g    S  G    α  G   +  e  G   

where   y  i    is a vector of phenotypic observations on B=birth weight, W=weaning weight, or G=post 
weaning gain,   j  i    is a fixed covariate accounting for the difference in expected value between geno-
typed and non-genotyped founders for each trait,   b  i    are all the other fixed effects,   p  i    are the random 
permanent environmental effects of the dam for birth or weaning weight,   a  i    are the random additional 
polygenic effects of each trait,   m  i    are the random maternal genetic effects of birth or weaning weight,   
u  i  

n   are the direct breeding values for non-genotyped animals for each trait,   α  i    are the random marker 
or SNP effects for each trait, and   e  i    are the random residual effects for each trait. The   J  i    matrices 
are formed from a vector of 1’s corresponding to genotyped individuals and an imputed value for 
non-genotyped animals,   X  i   ,   P  i   ,   Z  i   ,   M  i   , are incidence matrices for fixed effects, maternal permanent 
environmental effects, direct genetic effects, and direct maternal effects, respectively,   Z  i  

n  , and   Z  i  
g   are 

direct effect incidence matrices for non-genotyped and genotyped individuals with phenotypes, and   
S  i    are marker matrices for centred SNP covariates for genotyped animals. The variance-covariance 
matrices and their inverses for this single-step marker effects model and its mixed model equations 
are in Fernando et al. (2016) and Garrick et al. (2018).

Two approaches to characterise convergence during PCG iteration are the two-norm of the pre-
conditioned residual divided by the number of effects (which we denote the iteration residual), and 
the two-norm of the raw residual, divided by the two-norm of the right-hand side, which we denote 
as cr (following Lidauer et al. 2015). That is, for solving equations denoted by coefficient matrix, 
solution and right-hand side as  Cs = r , based on the preconditioned equations   P   −1  Cs =  P   −1  r ,  the 
vector of raw residuals at iteration k is   ε   k  = r − C    ̂  s     k  , which is used every round of iteration to compute 
the  residual =  ε   k ′ P   −1   ε   k  / length(  ε   k  ), and  cr =  √ 

_
  ε   k ′ ε   k  / r′r   , for all effects, or separately for each effect in 

the mixed model equations (i.e.,   j  i   ,   b  i   ,   p  i   ,   a  i  ,    m  i   ,   u  i   , and   α  i   ).
Two options were compared for the preconditioning matrix, the simplest representing the inverse 

of the diagonal elements of the mixed model equations (i.e. diagonal preconditioning), and the other 
replacing the preconditioner elements for the fixed effects by the actual inverse of the submatrix of 
the mixed model equations for fixed effects, namely    (X′ R   −1  X)    −1  , either separately for each trait, or 
with one block for all three traits.

Two options for forming the mixed model equations were compared, one which explicitly fitted all 
the effects other than the random residual effects shown in the model equation above, and a reduced 
order set of equations in which fixed effects,   b  i   , for all three traits had been absorbed. The absorbed 
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equations can be represented by striking out the rows and columns of the mixed model equations 
corresponding to the fixed effects to be absorbed, then subtracting some terms from the coefficient 
matrix and right-hand side to eliminate the absorbed equations. For the simplest mixed model equations 
represented by the model equation  y = Xb + Zu + e  with  var (u)  = G  and  var (e)  = R , the complete 
mixed model equations would have order defined by the number of fixed effects plus the number of 
random effects and be given by

  [ X′ R   −1  X  X′ R   −1  Z   Z′ R   −1  X  Z′ R   −1  Z +  G   −1  ]  [ b  u ]  =  [ X′ R   −1  y
  Z′ R   −1  y  ]  , whereas the absorbed equations would have order defined 

by the number of random effects as in the equations
  [Z′ R   −1  Z +  G   −1  − Z′ R   −1  X   (X′ R   −1  X)    −1  X′ R   −1  Z]  [u]  =  [Z′ R   −1  y − Z′ R   −1  X   (X′ R   −1  X)    −1  X′ R   −1  y]  .

RESULTS AND DISCUSSION
The number of iterations and computing times per iteration for BOLT PCG software on a 256Gb 

RAM Ubuntu server using one 12 Gb Titan V graphics processing unit are shown in Table 1 for the 
complete and absorbed sets of mixed model equations for various stopping criteria. Correlations 
between solutions for each factor from different approaches all exceeded 0.99 if not 0.999.

Table 1. Numbers of PCG iterations to achieve alternative stopping criteria in the North Ameri-
can Hereford multiple-trait single-step growth analysis using block or diagonal preconditioning 
of full or absorbed equations

Mixed Model 
 Equations Preconditioner

Stopping Criteria Time
 per
 iter

Change in residual cr
1e-10 1e-11 1e-12 1e-13 1e-5

Complete1 Diagonal 1,768 1,826 4,373 5,435 2,617 0.17s
Complete2 Diagonal 1,575 3,227 4,627 6,182 2,624 0.15s
Complete2 Block 2,483 2,858 2,858 2,858 2,502 0.15s
Absorbed Diagonal 2,123 3,289 3,386 6,965 8,641 0.21s

1Separate submatrix blocks for J factor and X factor for each trait
2Single submatrix block for J factors for B,W,G and another for X factors for B,W,G

The total computing time for PCG solution of the multi-trait single-step marker effects model 
varied from 4 minutes to 24 minutes but was influenced to a much greater extent by the number of 
iterations (1,575 to 8,641) required for convergence than by the computing time per iteration (0.15 
to 0.21 s). The absorbed equations if formed explicitly are much less sparse than the complete set of 
mixed model equations, but the computing effort was little affected by the absorption of effects as 
the matrix multiplications were done in parts.  This is not surprising as easily shown by denoting the 

coefficient matrix for the full equations to solve as   [  S   −1   T  T′  Q ]  , where   S   −1   represents the fixed effects 

block diagonal partition to be absorbed,  Q  represents the block diagonal partition for all the other 
effects, and T represents the block off-diagonal partition between the effects being absorbed and the 
remaining effects, then the left-hand-side of the absorbed equations can be represented as   [Q − T′ST]  
. Each iteration of PCG involves multiplying the coefficient matrix by a work vector, denoted w, as 
in   w ′  =  [  w  b  ′   w  u   ]  , which for the complete equations requires computing   S   −1   w  b   ,  T  w  u   ,   T′w  b   , and   Qw  u   
, whereas for the absorbed equations it would requires computing   Qw  u    and  T′ST  w  u   . The latter term 
can be computed in parts as  T′ (S (T  w  u  ) ) ,  first involving the matrix-vector product  T  w  u   , then pre-mul-
tiplying this vector by  S  then pre-multiplying that product by  T′ . The only difference in effort between 
applying the PCG algorithm to the full or the absorbed equations is the computation of the matrix 
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product involving   S   −1   rather than the matrix product involving  S . In many mixed model equations, 
the sparsity and complexity of   S   −1   is similar to that of  S , for example for    (X′ R   −1  X)    −1   and  X′ R   −1  X . 
Computation of the matrix-vector products in the full equations can be done in parallel, whereas the 
part equations requires the multiplications to be undertaken serially, involving the product of the first 
matrix-vector as the vector used in the second matrix-vector multiplication. 

Changes in the number of iterations required to meet a given stopping criterion occur due to 
rounding errors and loss of conjugacy even when there is no change to the elements of the mixed 
model equations, or to the method of preconditioning, as shown by comparing rows 1 and 2 of Table 
1 when the complete mixed model equations were partitioned into submatrices by factor and trait 
compared to when the factors for J were pooled across traits into one submatrix, and the factors for 
X were pooled across trait into another submatrix.

Using a block diagonal structure rather than a diagonal matrix for preconditioning fixed effects 
was initially slower but reached convergence much faster for higher convergence thresholds.

Changes in the number of iterations by absorbing the fixed effects did not have a consistent effect 
on the number of iterations. This is partly because the process of absorption reduces the two-norm in 
the denominator of the cr criterion, making the same tolerance (i.e. cr <1e-5) much more strict than 
in the complete mixed model equations.

Changes in the number of iterations by changing stopping criteria (from residual to cr) or the 
tolerance of the stopping criteria, resulted in reranking of the performance of the algorithms. The 
residual statistic is not a good stopping criterion because it tends to bounce around from iteration to 
iteration, but can occasionally achieve very small changes between iterations that result in apparent 
convergence that is not supported by the cr statistic. However, the cr statistic is sensitive to parame-
terisation of the mixed model equations, as shown by the effect of absorption, which also makes that 
criteria problematic for routine use.

CONCLUSIONS
The results demonstrate that uniformly appropriate convergence criteria for PCG systems are 

challenging to identify. Minor changes to the manner in which the mixed model equations are param-
eterised can have considerable influence on performance and run time, most notably by influencing 
the number of iterations required to achieve a given definition of convergence. Alternative blocking 
structures, preconditioning matrices, and parameterisation of models can notably influence results.
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