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SUMMARY

Single step genomic evaluation fitting a ‘hybrid’ model which combines marker effects for
individuals with genotypes with breeding values for non-genotyped animals can readily accommodate
large numbers of genotyped animals. However, iterative solution of the pertaining mixed model
equations via a preconditioned gradient scheme has been reported to be afflicted by much slower
convergence rates than the standard breeding value model. ‘Deflation’ of the coefficient matrix has
been proposed as a second preconditioning step and shown to dramatically reduce numbers of
iterations and computing time required. We describe its application for a set of sheep data. Results
indicate that assignment of marker effects to subdomains in moderately sized chunks together with a
separate treatment of genetic group effects could reduce total computing times by about a third.

INTRODUCTION

The single-step procedure for joint genetic evaluation of genotyped and non-genotyped animals
has become routine in many livestock improvement schemes. Many implementations rely on extending
the classic breeding value model (BVM) by combining the pedigree-based relationship matrix with
estimates of genomic relationships. An equivalent alternative is the so-called hybrid model (HM)
which fits marker effects instead of breeding values for genotyped animals (Fernando et al. 2016). This
does not require the inverse of the genomic relationship matrix and thus readily accommodates large
numbers of genotyped animals. However, initial experience with a preconditioned conjugate gradient
(PCG) algorithm to solve the pertaining mixed model equations (MME) has been that convergence
rates tended to be slow and that many iterates could be required. Recently, Vandenplas et al. (2018)
showed that a second level of preconditioning — through a ‘deflation’ of the coefficient matrix in
the MME - could dramatically improve convergence rates and demonstrated its effectiveness for a
large, multi-trait analysis of dairy field data. This paper examines the scope of the resulting, deflated
preconditioned gradient (DPCG) solver for a practical sheep data set.

BACKGROUND

Let Cx = r represent the MME to be solved, with C (of size N X N) the coefficient matrix, x the
vector of effects and r the vector of right hand sides. A widely used iterative method to solve for x is
the conjugate gradient (CG) algorithm. Its convergence rate is heavily influenced by the condition

number, of C, K(C), i.e. the ratio of its largest to its smallest eigenvalue. Convergence rates can be

improved if K(C) can be reduced. An extensively used method to achieve this is to ‘pre-condition’

the MME, i.e. to solve M"'Cx = M™'r instead. Choice of the preconditioning matrix M usually
represents a compromise between M being close to C (so that M™'C is close to an identity matrix)
and requirements for storing or inverting M. Simple, effective choices are (block-) diagonal matrices
where M contains the diagonals (or small diagonal blocks) of C.

Deflation has been advocated as a method to eliminate ‘unfavourable’ eigenvalues of a matrix by
projection on a suitable subspace. Let P denote a matrix comprised of S linearly independent columns
(of size N) which form a subspace of C so that CP = PT and T is a non-singular matrix of order S .
For VP =1 (where I is an identity matrix), Householder (1961) showed that the deflated matrix B =
C — PTYV has S zero eigenvalues and the remaining eigenvalues of B are those of C that are not
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eigenvalues of T. Hence, assuming C is non-singular, B has rank N —S. Similarly, the eigenvectors
of B are those of C that correspond to their common eigenvalues. In other words, “deflation of an
eigenspace cancels the eigenvalues without affecting the rest of the spectrum” (Frank and Vuik 2001).

Use of a deflation preconditioner for CG and PCG algorithms has been considered by various
authors in a range of fields (e.g Tang et al. 2009; Jonsthovel et al. 2012). Combining deflation with the
‘standard’ preconditioner yields the DPCG, a two-level preconditioning scheme particularly suited to
ill-conditioned systems of equations. It involves solving M™'PCx=M"'Pr with P=I-CS(S'CS)"'S’
aimed at reducing K(C) and S a matrix of size N X S which defines the deflation subspace (Frank
and Vuik 2001). This requires the choice of S. Loosely speaking, the closer the deflation vectors
(i.e. columns of S) approximate the ‘unfavourable’ eigenvectors of C the more effective deflation
is likely to be. However, as for M it involves trade-offs between improvements in convergence and
extra computational requirements. A simple strategy is to divide the space of C in correspondence to
non-overlapping subsets of equations, referred to as subdomains (Frank and Vuik 2001). Let the i—th
element of x belong to the j—th domain (j=1to §). This gives a matrix S with i j—th element equal
to unity while the remaining elements are equal to zero, i.e. each row of S has only one non-zero
element. At the extreme, fitting subdomains for individual, single effects is analogous to ‘absorbing’
the pertaining equations in the mixed model.

MATERIAL AND METHODS

Data consisted of 1,206,908 measurements for eye muscle depth recorded for Australian terminal
sire sheep breeds between 1990 and 2018. Data were pre-corrected for fixed effects other than
contemporary groups. There were 1,698,838 animals in the pedigree and genotype information,
comprised of marker counts for 48,599 SNPs, was available for 23,040 animals. Invoking the HM,
additive genetic effects were fitted for non-genotyped animals and marker effects modelled those of
genotyped individuals. For simplicity, additional polygenic effects were assumed to be absent. In
addition, the model included 54,094 contemporary groups (fixed), 93 genetic groups (random) and
56,212 sire x flock-year (random) effects.

MME were built and solved using either PCG or DPCG with independent subdomains as described
above, using a diagonal preconditioner, M = Diag{C]}, throughout. Solutions were assumed to have
converged when @ vV(x; — Xg—1) (X — Xp—1) /X' Xg < 1077, with x; denoting the vector of solutions
from the k—th iterate and « the step size parameter in the (D)PCG algorithm. Analyses were carried
out considering all markers and reduced marker panels. To select the latter a simple GWAS was
performed fitting markers as fixed covariables, one at a time. Subsets, of size m, were then selected to
include those with p-values less than 0.5, 0.2, 0.1 and 0.05. Following Vandenplas et al. (2018), single

Table 1. Numbers of iterates required to solve the mixed model equations for different defla-
tion subdomain (‘chunk’) sizes and marker subsets

A mP No. of iterates Correlation®

- 2004 100 50 20 10 5 NOG® GEN

- 48599 3961 2722 2222 1741 1188 859 612 - -
0.50 28875 3348 2525 2091 1682 1167 840 599 1.000  0.995
020 13318 2565 2118 1871 1559 1126 832 598 0.999 0977
0.10 7858 2159 1833 1654 1416 1085 824 606 0.998  0.962
0.05 4680 1756 1560 1461 1293 1025 820 619 0.997  0.943

@ Minimum p value for marker subset selection ~ ° Number of markers ¢ Correlation of total breeding values from
analyses using all and a subset of markers 4 Number of markers per ‘chunk’ ¢ NOG non-genotyped, GEN genotyped

p
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Figure 1. Numbers of iterates required for different deflation schemes and chunk sizes

domains were allocated to fixed eftects and to all random cftects other than marker eftects. Equations
for marker cffects were divided into subdomains by sclecting subsequent chunks (of cquations) of
size 5, 10, 20, 50. 100 or 200 to investigate the effzct of chunk size on eflicacy of deflation. This is
referred to as scheme A. Scheme B was similar, but fitted separate subdomains for genctic group
cffccts, with chunk sizes of 1 or 93. Computations were carried out under Linux on a shared machine
with 512GB of RAM and 28 Intel Xeon CPU ES-2697 cores. rated at 2.6Gh using up to 28 threads.

RESULTS AND DISCUSSION

Numbers of iterates required to solve the MME for deflation scheme A are summarised in Table 1.
For comparison, a corresponding analysis fitting the BVM and standard PCG (not shown) converged
in 691 iterates. As reported by Vandenplas ez al. (2018), deflation dramatically improved convergence,
but small chunk sizes — and thus many subdomains — were required to achieve rates similar to those
fitting the BVM. Reducing the number of markers decreased the number of iterates, especially for the
larger chunk sizes (or no deflation), as well as reducing computations per iterate that were proportional
to the number of markers. While correlations between predicted breeding values from analyses using
the full and rcduced marker sets for genotyped animals were less than (.99 when markers with
p-values less than (.5 were climinated, marker sclection often aftects the accuracy of evaluation
considerably less, i.c. there is likely more scope for marker reduction than these correlations suggest.
E.g.. Saatchi and Garrick (2016) proposed a reduced panel for beef cattle comprising about 2,300
markers to capturc most of the predictive performance of the full SOK pancl.

Figure | illustrates the relationship between numbers of iterates required and deflation subdomains.
Patterns for the other marker subsets were similar. Clearly, as emphasized by Frank and Vuik (2001),
the ctticacy of deflation increases with the number of subdomains employed. However. as S increascs
additional reductions in numbers of iterates achieved decrease. Our model of analysis fitted genetic
groups as an additional random cffect. This is known to aftect convergence rates unfavourably -
investigations for the BVM found that it almost doubled the number of iterates needed (Meyer er al.
2015). Additional analyses (not shown) identified a similar pattern for our data for the HM with
standard PCG. Hence. scheme B attempted to counteract the detrimental eftects of fitting genetic
groups by defining additional subdomains. As shown in Figure 1 this yiclded further reductions in the
number of iterates required, the more so the larger chunk size for deflation of equations for marker
cifects. Even adding a single subdomain for all genetic groups (chunk size of 93) proved highly
cftective. Similarly. applying DPCG for the BVM. fitting a single subdomain for genetic groups (in
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addition to two subdomains comprising all fixed and all 48599 SNPs .
other random eftects. respectively) reduced the number ™ o
of iterates required from 691 to S36. i

While DPCG has the scope to dramatically improve
convergence rates and its implementation is straightfor-
ward, deflation incurs additional computational cost per
iterate and for set-up steps which need to be balanced
against reductions in numbers of iterates and additional
memory requirements. Figure 2 shows total, elapsed
computing times for different analyses. Matrices CS
and (S’CS)’I only need to be computed once but the
computational burden increases with S and S, respec-
tively. and storage for large numbers may become pro-
hibitive. For our data, values of § greater than about
2,000 (using all markers) tended to increase total com-
puting times, primarily due to these overheads. Overall,
moderate deflation for markers, involving chunks of 20 to 100 SNPs, paired with assigning genetic
groups to individual subdomains appeared to yicld a reasonable compromise between improvements
in convergence behaviour and additional computations for deflation. Our implementation relied on

Elapsed lime (min)

0 2500 5000 7500 10000
Number of subdomains
Figure 2. Total computing times®*
4 See Figure 1 for legend

in-core storage of CS and ($'CS)™" and the data part of C, but involved only limited optimisation
of the computations associated with deflation. Values for “iteration on data’, out of core storage or
improved parallel processing may differ: see Vandenplas e7 al. (2018) for some timings and discussion.
As demonstrated for genetic groups, deflation assigning additional. separate subdomains to random
ctfects other than markers was found to be advantageous. Further analyses (not shown) identified
extra improvements in convergence rates when defining subdomains for groups of additive genetic
cftects for non-genotyped animals. Morcover, deflation also proved capable of improving convergence
rates for the BVM. Further work will need to examine the efficacy of DPCG for multivariate analyses
involving many traits and models fitting maternal effects, and to improve its implementation.

CONCLUSIONS

Deflation of the coefticient matrix in the mixed model equation reduces its condition number
and thus improves convergence rates of an iterative solution scheme employing a conjugate gradient
algorithm. It appears to be a valuable addition to our toolkit for genomic cvaluation.
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