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SUMMARY
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Common implementations of single-step genomic evaluation require the inverse of the genomic 
relationship matrix. Obtaining the inverse can become computationally prohibitive as its size increases. 
Stimulated by rapidly increasing numbers of genotyped animals, several procedures to approximate 
this inverse have been proposed. We examine the impact of two methods of approximation on 
predicted breeding values for a multi-breed population of Australian sheep. Results show that very 
high correlations with predictions using the full inverse can be achieved whilst reducing computational 
requirements. However, current levels of genotyping in our data were relatively low and results need 
to be validated as larger number of genotypes become available.

INTRODUCTION
The single-step procedure for joint genetic evaluation of genotyped and non-genotyped animals 

(ssGBLUP) has become routine in many livestock improvement schemes. In essence, it extends the 
classic breeding value model to include genomic information by replacing the pedigree based 
relationship matrix (A) with its counterpart (H) which combines both. Only H−1 is required in the 
mixed model equations (MME) to be solved. This can be formed directly, but does require the inverse 
of two matrices of size n2 × n2, with n2 the number of genotyped animals. The first is the inverse of 
the dense genomic relationship, G, which needs to be inverted explicitly. The second is the inverse of 
A22, the corresponding part of A, which can be obtained indirectly by exploiting partitioned matrix 
results (e.g. Strandén et al. 2017). Rapidly increasing numbers of genotyped animals have stimulated 
development of approximations for G−1. We examine the impact of two proposed schemes for a 
multi-breed set of sheep data, namely the ‘algorithm for proven and young’ (APY) sires (e.g. Misztal 
et al. 2014) and the use of the Woodbury matrix identity combined with a reduction in the number of 
principal components (PCs) considered, dubbed TBLUP (Mäntysaari et al. 2017).

MATERIAL AND METHODS
The APY inverse. Reorder and split G into a set of ‘core’ (or proven) animals and a set of 

‘non-core’ (or young) animals, denoted by subscripts ‘C’ and ‘N’, respectively. This gives

G−1 =


G−1

CC +G−1
CCGCNGNNGNCG−1

CC −G−1
CCGCNGNN

−GNNGNCG−1
CCGNC GNN

 for G =

GCC GCN

GNC GNN



with GNN =
(
GNN −GNCG−1

CCGCN

)−1
=G−1

NN.C , where GNN.C is the matrix of relationships amongst
non-core animals conditional on the core animals. For pedigree relationships, the diagonals of the 
corresponding function of A represent Mendelian sampling terms. Moreover, if non-core animals 
had no progeny, the matrix would be diagonal. Analogously, if non-core animals can be chosen so 
that GNN.C is close to diagonal, a suitable approximation of G−1 can be obtained by substituting 
DN = Diag{GNN.C } for it (Misztal et al. 2014). This gives an approximate inverse which is considerably 
sparser than G−1 and can reduce computational demands dramatically.

The TBLUP inverse. Consider G of form (λ/s)ZZ′ + B with Z the n2 × m matrix of m centered 
marker counts and s a scale factor. A common choice for B is (1 − λ)A22 + λαJ for λ < 1, α ≥ 0 a
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small constant and J a matrix with all elements equal to unity. The Woodbury identity gives

G−1 =B−1 − (λ/s)B−1Z
(
I+ (λ/s)Z′B−1Z

)−1
Z′B−1 =B−1 −T′T with T of size m× n2.

Similarly, B−1 = (1 − λ)−1[A−1
22 − ψA−1

22 JA−1
22
]

with ψ = λα/
(
1 − λ + λα1′A−1

22 1
)
. This can re-

duce computational requirements to obtain G−1 if m is substantially smaller than n2. Further, let
(λ/s)Z′B−1Z = VEV′, where E denotes the diagonal matrix of eigenvalues and V the correspond-
ing matrix of eigenvectors. An approximate inverse of G can then be obtained by considering
the r < m largest eigenvalues and corresponding eigenvectors only, i.e replacing T above with
Tr = (Er + Ir)−1/2V′rZ, of size r× n2 (Mäntysaari et al. 2017).

Data and model. Data consisted of 1,206,908 records for eye muscle depth, recorded for Aus-
tralian terminal sire sheep breeds between 1990 and 2018. These included Poll Dorset, Suffolk, White
Suffolk and Texel as the main breed groups and 18 other, less numerous breeds. Breed differences
were modeled by appropriately defined genetic group effects.

Data were pre-corrected for fixed effects of birth and rearing type, age, age of dam and body
weight. The model of analysis comprised additive genetic effects (random) for 1,698,838 animals
in the pedigree, 54,094 contemporary groups (fixed), 93 genetic groups (random) and 56,212 sire
× flock-year (random) effects. Genotype information, comprised of marker counts for m = 48,599
SNPs, was available for 23,040 animals.

Analyses. The ‘raw’ genomic relationship matrix, was built using Method 1 of Van Raden
(2008), GM = ZZ′/s, centering marker counts by observed gene frequencies. G was then formed
as the weighted average of GM and A22 aligning the matrices as described by Vitezica et al. (2011),
G = λ(GM +αJ)+ (1−λ)A22 for α = 0.02497, and arbitrarily chosen weighting factor of λ = 0.95.

Analyses considered APY core sizes from nC = 2.5K to 20K (with K denoting a factor of 1000).
Core animals were chosen either by picking genotyped animals at random (RND) or by selecting
those with the most progeny (PRG). TBLUP type approximations of G−1 utilised the leading PCs
explaining between 90% and 99% of total variation. Single-step BLUP analyses were carried for all
approximations of G−1 and contrasted to a ‘standard’ ssGBLUP analysis with the ‘full’ G−1 (FULL).
MME were solved iteratively using a preconditioned conjugate gradient (PCG) algorithm with simple,
diagonal preconditioner. All calculations were carried out usingWOMBAT (Meyer 2007).

Summary statistics calculated were correlations between predicted total breeding values (EBV),
i.e. the sum of the predicted additive genetic effects and the appropriate portions of the predicted
genetic group effects, from FULL and APY or TBLUP analyses. In addition, corresponding regression
coefficients and ranges of differences in EBVs were examined.

RESULTS
Correlations between and regressions of EBVs from FULL on APY analyses are summarised in

Table 1. As in various literature reports, there were only small differences between schemes to select
core animals. Core sizes about 15K were required to ensure correlations for non-core animals to be
close to 0.999. This is in line with results of Pocrnic et al. (2016a,b) who demonstrated for a number
of livestock species that core sizes of 15K or less sufficed to achieve peak predictive accuracies.
Based on simulations linking core and effective population size, the authors recommended a core
size equal to the number of eigenvalues (of G) explaining 98% of total variation. For GM and G
this was equal to 15,220 and 16,714, respectively. In comparison, for a multi-breed population of
New Zealand sheep, 18.8K eigenvalues were needed to capture 98% of the variation among 47K
genotypes (Nilforooshan and Lee 2019). Linear regressions of FULL on APY EBVs for core sizes of
10K or more were essentially unity (with corresponding intercepts close to zero) demonstrating that
approximation of G−1 at sufficient core size did not distort distributions of EBVs markedly.
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Table 1. Relationship between total predicted breeding values from single-step analyses using
the ‘full’ inverse of the genomic relationship matrix and its APY approximation

Typea Sel.b Correlation Regression coefficient

2.5c 5 10 15 2.5 5 10 15

NOG RND 0.9993 0.9997 0.9999 1.0000 1.0021 1.0013 1.0009 1.0000
PRG 0.9992 0.9997 0.9999 1.0000 0.9980 0.9999 1.0006 1.0002

NOC RND 0.9644 0.9831 0.9953 0.9986 0.9974 1.0038 1.0040 1.0007
PRG 0.9636 0.9833 0.9953 0.9988 0.9789 1.0063 1.0074 1.0048

COR RND 0.9941 0.9983 0.9996 0.9999 0.9849 0.9921 1.0006 1.0003
PRG 0.9991 0.9991 0.9997 0.9999 0.9854 0.9956 0.9985 1.0004

a NOG: non-genotyped, NOC: non-core and COR: core animals b Selection of core animals: RND random, PRG most
progeny c Number of core animals; in thousand

Table 2 shows the numbers of non-zero elements in H−1 for different APY approximation of G−1

and their effects on the number of iterates required to solve the MME. In comparison, corresponding
numbers for FULL, were 271 million elements and 611 iterates. Use of APY tended to increase the
number of iterates required somewhat, especially when selecting core animals with most progeny.
A similar increase over the standard ssGBLUP has been reported by others (Strandén et al. 2017;
Mäntysaari et al. 2017).

For n2 = 23,040 genotyped animals and m = 48,599 SNPs considered, there was no computa-
tional advantage for the Woodbury inverse of G. Moreover, the number of non-zero eigenvalues of
(λ/s)Z′B−1Z was limited to n2. As shown in Table 3, sufficient PCs – just over 15K – to explain
about 97% of total variation were required to yield correlations between TBLUP and FULL EBVs
for genotyped animals of 0.999. Corresponding regression coefficients (not shown) were again
close to unity. As for APY, there was a slight trend for the number of iterates to increase with less
approximation, i.e. more PCs considered.

DISCUSSION
Approximation of G−1 via APY is widely used and has made ssGBLUP for very large numbers

of genotypes feasible. For instance, Lourenco et al. (2018) described the APY implementation for
American Angus cattle with 450K genotyped animals, and Masuda et al. (2017) reported on dairy
analyses with 720K genotypes. There has been concern, though mainly anecdotal, that APY would
work less well for multi-breed populations or at least require larger core sizes than for single breeds.
A simulation study by Vandenplas et al. (2018) demonstrated good performance of APY for crossbred
data when the core, of size equal to the number of eigenvalues explaining 98 to 99% of variation in G,
included animals from all breed compositions. Dealing with a beef cattle population involving 41

Table 2. Number of non-zero elements in H−1 (half-stored) for different APY schemes and
number of iterates required to solve the corresponding mixed model equations

Select.a Number of non-zero elementsb Number of PCG iterates

2.5c 5 10 15 20 2.5 5 10 15 20

RND 164 189 228 255 269 644 629 639 641 632
PRG 154 181 228 261 270 627 650 713 779 745
a Selection of core animals: RND random, PRG most progeny b In millions c Number of core animals; in 1000
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Table 3. Correlations between total predicted breeding values from single-step analyses using
the ‘full’ inverse of the genomic relationship matrix and its TBLUP approximation

Proportion of variation explained

90% 95% 96% 97% 98% 99%

No. of eigenvalues 9,946 13,077 13,990 15,094 16,502 18,908
No. of PCG iterates 614 629 636 641 663 686
Non-genotyped animals 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
Genotyped animals 0.9950 0.9982 0.9987 0.9991 0.9995 0.9998

breeds, Mäntysaari et al. (2017) recommended TBLUP as a well defined and automatic approach to
approximate G−1 for any population structure. Our results suggest that approximation of G−1 using
either APY or TBLUP can result in predicted breeding values which are virtually identical to those
obtained inverting G directly, whilst offering the scope for reducing computational requirements.
Details will depend on the implementation of ssGBLUP and have not been considered in this study;
see Mäntysaari et al. (2017) for some discussion of respective strategies and timings. A suitable APY
core size or number of PCs to be used for TBLUP was identified to be about 15K. This fell well
within the range of corresponding values reported in the literature for single breed studies. However,
current levels of genotyping for our data were relatively modest and, moreover, the distribution of
genotypes over breeds was very uneven. It remains to be seen whether such levels of approximation
will be representative as the number of genotypes increases, especially for the minor breed groups.

CONCLUSIONS
Techniques available to approximate the inverse of the genomic relationship matrix in single

step genomic evaluation can yield predicted breeding values for multi-breed sheep that are highly
correlated with those obtained using a full inverse. Future work will need to re-evaluate suitable levels
of approximation as numbers and breed diversity of genotyped animals increase.
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