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SUMMARY
For the design of breeding programs it is important to understand how trait measurement translates 

into selection accuracy. The introduction of genomic selection has created new challenges, in particular 
in relation to designing reference populations and valuing information sources for their contribution 
to genetic gain.  The accuracy of genomic prediction depends on trait heritability, the number of 
phenotypes used (on genotyped animals) and the ‘effective number of chromosome segments’ that 
need to be estimated. The latter parameter is challenging to estimate but can in principle be derived 
from the variation in relationships between the reference set and the target animal. This paper attempts 
to validate that theory based on real data, with the aim to develop further insight into the value of a 
certain reference set for the genomic prediction of a certain target animal.

INTRODUCTION
Genomic selection has become an integral part of breeding programs. The information about 

genetic merit obtained from genomically tested animals depends on the accuracy of the genomic test 
itself, and that from various other sources of information such as performance data on an animal itself 
and (or) its relatives. There is good selection index theory about the value of various information 
sources, and the accuracy of estimated merit we can expect if we combine them in a prediction 
framework such as Best Linear Unbiased Prediction (BLUP). However, we are still struggling to get 
a good handle on the information that we can expect from a genomic test. A better understanding of 
the components that drive the accuracy of a genomic test is important, not only for the breeder who 
needs to decide whether to invest in it, but also for those setting up reference populations to facilitate 
a higher accuracy of genomic testing. Investment in reference population occurs through individual 
breeders or breeder groups, breed societies, and funding bodies. It is important to be able to value 
the contributions of different information sources, the possible advantages of further increasing the 
size of the reference population and the usefulness of a certain reference set for animals with varying 
degrees of relationship to that reference.

The purpose of this paper is to review the theory that has been proposed to predict the accuracy 
of genomic prediction and to validate this theory with some examples involving real data. This might 
lead to a way forward on how to decide about the size and structure of reference populations and how 
to value them in prediction of genetic merit in the context of breeding programs. 

THEORY ON THE ACCURACY OF GENOMIC TESTING
The most frequently cited formula to predict the accuracy of genomic testing comes from Daetwyler 

et al. (2008), who proposed: 
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where h2 is the trait heritability, N is the number of individuals with an observed phenotype as well 
as genotype, and Me is the ‘effective number of chromosome segments’. The formula is remarkably 
simple. It is based on the accuracy of estimating a random effect, which is N/(N+l), where l is the 
ratio of the residual variance (Ve) and the variance of the effect to be estimated. Under a polygenic 
model quantitative trait loci (QTL) are spread across the whole genome, each with a small effect. The 
variance of each independent chromosome segment is the VA/Me, where VA is the additive genetic 
variance. When estimating one segment at a time then Ve is approximately equal to the phenotypic 
variance and l @ Me/h

2, such that (1) is equivalent to N/(N+l). This will give a slight underestimation 
of accuracy if all segments are estimated jointly and Ve < Vp.

Further papers by Goddard (2009) and Goddard et al. (2011) have refined the theory, e.g. by 
accounting for lower density marker panels, where the LD between markers and QTL is insufficient 
such that the proportion of the genetic variance ‘captured by markers’ is b = M/(Me + M), where M 
is the number of genetic markers, and rĝ,g = √bh2/(h2+Me/N). Note that with very many markers b 
approaches 1. For a given Me and high values of b, there is limited dispute about predicting genomic 
accuracy. However, approximations for Me vary widely, and various formulae have been presented all 
leading to quite different results (Table 1). In fact, variation between predictions of genomic accuracy 
almost entirely depend on the approximation of Me.

Table 1. Predicted accuracy of genomic test (rĝ,g), assuming 2500 observations (N), heritability 
h2=0.30, Effective population size Ne = 250; average chromosome length L=1; number of chro-
mosomes k=30, and number of markers M=50,000

Reference and approximation for Me

Daetwyler et 
al. 2008 Goddard 2009 Goddard et al. 

2011
Meuwissen et 

al. 2013 Lee et al. 2017

Parameter1 2NeLk 2NeLk/ 
ln(4NeLk) 

2NeLk/ 
ln(NeL)

2NeLk/ 
ln(2Ne)

Eq(11)

Me 15000 1455 2717 2414 611
b= M/(Me + M) 1.00 0.97 0.95 0.95 0.99
l = Me/h

2 50000 4991 9548 8434 2060
√ (N/(N+l)) 0.22 0.58 0.46 0.48 0.74
rĝ,g 0.22 0.57 0.44 0.47 0.74

1 Me = Effective number of chromosome segments; b= Proportion of genetic variance captured by markers; 
l = variance ratio of residual and that of one chromosome segment; √ (N/(N+l)) is accuracy for b=1.

In the theory described so far the approximations of Me assume the reference as a homogenous 
population where all individuals are more or less equally related to each other. However, genomic 
predictions are more accurate if the genomic relationship between the target animal and the reference 
population is higher (Habier et al. 2007; Clark et al. 2012). Van der Werf et al. (2015) noted that most 
reference populations are heterogeneous in their relationship towards the target animals they predict, 
i.e. some individuals in the reference are much more related to the target individual than others. They 
demonstrated in a simple model how a small group of more related individuals can contribute more 
information than a very large group of distantly related individuals. Heterogeneity also exists if the 
reference population consists of different breeds or crossbreds. Wientjes et al. (2015) have proposed 
deterministic prediction methods to accommodate information from different populations, where they 
also account for genetic correlations between populations being less than one. 
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The variation in relatedness is often hard to predict in advance in real world examples, and a 
pragmatic approach can be taken by looking at the variation in realised genomic relationships between 
the members of the reference population and the target individual to be predicted (Goddard et al. 
2011). This ‘empirical’ Me value derived from variation in genomic relationships implies that the 
Me parameter is related to the data set used for genomic prediction rather than being a population 
parameter, e.g. related to a certain breed. Lee et al. (2017) showed via simulation of a full sib population 
structure that the variation in genomic relationship (var(gij)) gives a reliable estimate of Me as Me = 1/ 
var(gij). Using this Me value in the Daetwyler formula gave satisfactory approximations of accuracy. 
However, calculating Me from variation in relationships seemed to over predict the accuracy of a 
genomic test when simulating a typical nucleus breeding program with a nested full-sib/half sib design 
across multiple generations (Jack Dekkers, pers. comm). Van den Berg et al. (2019) also found over 
prediction when applying it to simulated and real data from mixed breeds of dairy cattle.

VALIDATING THEORY WITH EMPERICAL RESULTS
It is difficult to validate the genomic prediction theory in real data based on outcomes of industry 

genetic evaluations such as BREEDPLAN or LAMBPLAN because these are based on so-called 
single-step models where information via genomic relationships is combined with information through 
pedigree relationships. Moreover, these evaluations are based on multiple trait models where information 
from correlated traits is included in the estimated breeding value (EBV). To quantify the accuracy 
of the genomic test in a more designed way we compared the prediction of genomic breeding value 
accuracy for three different traits, with varying heritability, and using the same reference population 
and two different validation sets. We derived Me from the variance in relationships (Lee et al. 2017) 
of the off-diagonal block of the genomic relationship matrix, i.e. between animals in the reference and 
animals in the validation set, and derived the predicted accuracy using [1]. The reference population 
consists of 5000 animals from multiple breeds from the CRC information Nucleus and MLA reference 
flocks. The validation population refers to 300 purebred merinos and 300 crossbred Border Leicester 
x Merino crosses. Predicted accuracies were compared with empirical accuracies derived from the 
correlation between predicted genomic breeding values and adjusted phenotypes of animals in the 
validation set, divided by h. Results are shown in Table 2.

The results show an obvious overestimation of the accuracy when using the variation in relationships 
to estimate the Me value. A likely reason is that the reference population consists of multiple breeds, 
giving a much larger variation in relationship relative to using a purebred reference. Note that the 
accuracy is evaluated after correction for breed effects, i.e. it is a within breed accuracy. An accuracy 
‘across breeds’ is much larger as from genotype data `it is relatively easy to predict differences 
between breeds, or genetic groups within breeds. A next step is therefore to correct the G-matrix for 
effects of population structure by taking out a number of principal components, i.e. using G* = G- S 
EiEi’di, where di is an eigenvalue of G and Ei is the associated eigenvector. Further testing can also 
occur using purebred reference populations, although such populations can still have an underlying 
group structure that needs to be taken into account. Van den Berg et al. (2019) also concluded that 
the variance in genomic relationships overestimated the accuracy, when they compared reference 
populations with various numbers of individuals from different breeds. They proposed an alternative 
method that seemed to be useful to predict accuracy from reference populations from combining breeds. 
However, there is also a need to evaluate the value of adding within breed cohorts to the reference, 
where these cohorts may vary in their relationship to the animals that are targeted in prediction. 
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Table 2. Realized genomic prediction accuracy and theoretical accuracy predicted from variation 
in relationships and effective number of chromosomes (Me) for two validation sets and using a 
multi-breed reference population1

Test Set Var(gij) Me=1/Var(gij)
Predicted 
accuracy2

Realized 
accuracy3

BL x Merino 0.001989 502.7 0.86 0.21
Merino 0.001840 543.6 0.85 0.29

1  Using a multi-breed reference set of N = 5000 animals, trait is post weaning weight; h2 = 0.28
2  Accuracy predicted using the Daetwyler formula [1] and the estimated value for M¬e¬ .
3  Realized accuracy is correlation between predicted genomic breeding value and observed phenotype (corrected 
for fixed effect), divided by the square root of heritability.

CONCLUSIONS
Further work is needed to validate the theory of deriving genomic prediction accuracy from the 

variation in genomic relationships, and to put a value on adding particular information sources to the 
reference population for genomic prediction. Although this approach requires a matrix with realised 
genomic relationships, it provides information about the contribution of various information sources, 
and this may be used to predict contributions of future cohorts. Moreover, this approach is flexible 
and can allow animals from multiple breeds or crossbreds.  

REFERENCES 
Clark S.A., Hickey J.M., Daetwyler H.D. and van der Werf J.H.J. (2012) Genet. Sel. Evol. 44: 4.
Daetwyler H.D., Villanueva B., and Woolliams J.A.. (2008) PLoS One 3: e3395.
Goddard M.E. (2009) Genetica. 136: 245. 
Goddard M.E., Hayes B.J. and Meuwissen T.H.E. (2011) J. Anim. Breed. Genet. 128: 409.
Habier D., Fernando R.L. and Dekkers J.C.M. (2007) Genetics 177: 2389.
Meuwissen T., B. Hayes and M. Goddard (2013) Annu. Rev. Anim. Biosci. 1: 221.
Lee S. H., Clark S.A. and van der Werf J. H. J. (2017) PLoS One 12: e0189775. 
Van der Werf J.H.J, Clark S.A., Lee S.H. (2015) Proc. Assoc. Advmt. Anim. Breed. Genet. 21: 
Van den Berg I., Meuwissen T.H.E., MacLeod I.M. and Goddard M.E. (2019). J. Dairy Sci. 102:1.
Wientjes Y.C.J., Bijma P., Veerkamp R.F. and Calus M.P.L. (2016) Genetics 202: 799.


