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SUMMARY
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Multi-trait single step genetic evaluation is increasingly facing the situation of having more in-
dividuals with genotypes than an individuals’ genotype has markers. This leads to an algebraically 
impossible inversion of the genomic relationship matrix (G). Recent derivations in single step equa-
tions called SS-T-BLUP have provided an elegant way to circumvent the inversion of the G and 
therefore accommodate the described situation. In this paper we examine the applicability of the SS-
T-BLUP model to the multi-trait Australian Angus BREEDPLAN genetic evaluation and compare 
the results to applying two different ways of using G in a single step model. Results clearly show 
that SS-T-BLUP outperforms other single step formulations and allows users to avoid approximating 
the inverse of G.

INTRODUCTION
Within the last decade genotyping thousands of individuals with Single Nucleotide Polymor-

phism (SNP) chips at the commercial level has become common practice in many species of eco-
nomic relevance. However, due to cost effectiveness these individuals are being genotyped with 
low to medium density SNP chips, with usually not more than 50,000 markers. To date, genetic 
evalua-tion systems allow for SNP marker genotypes via the so-called Single Step model 
(Christensen and Lund 2010). In this model most often markers are used to pre-calculate a 
marker based relation-ship matrix which subsequently combined with the usual pedigree derived 
relationship matrix to a so-called H matrix (SS-H-BLUP). This requires the inverse of G as well. 
The described situation of having thousands of individuals genotyped at medium to low density has 
led to the situation where G is algebraically no longer invertible due to rank deficiencies. A possible 
solution is to abandon G and move to a model which incorporates the markers directly (SS-SNP-
BLUP). While SS-SNP-BLUP is generally equivalent to SS-H-BLUP many of its final 
implementations suffer from convergence problems with regard to iterative solving or demanding 
pre-conditioner computation. Recently an elegant intermediate model has been formulated which 
may be seen as a mix of SS-H-BLUP and SS-SNP-BLUP called SS-T-BLUP (Mäntysaari et al. 
2017). SS-T-BLUP does not need G nor its inverse and fits the markers directly. As it fits G 
implicitly, it is algebraically equivalent to SS-H-BLUP under certain assumptions. In addition, it 
provides EBVs at the individual level which can be readily transformed into marker solutions. In 
this paper we will examine the effect of SS-T-BLUP on the computational load to a Single Step 
genetic evaluation of Australian Angus. We will compare the results relative to the ordinary SS-H-
BLUP approach.

METHODS
Model. The “H” matrix (Christensen and Lund 2010) required for SS-H-BLUP can be written

as
A1,1 −AiA2,2A′

i +AiGwA′
i AiGw

GwA′
i Gw (1)
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where 1 is a vector indexing the subset of nng non-genotyped of individuals, 2 is a vector indexing
the subset of ng genotyped individuals, A is the pedigree-based relationship matrix, Ai = A1,2A−1

2,2,
and Gw is a genomic relationship matrix dimension ng × ng which is constructed from a centred
and scaled marker genotypes matrix M of dimension ng × nm and subsequently blended. Thus
Gw = γMM′ + λC, where C is an arbitrary but symmetric matrix and γ and λ are arbitrary non-
zero weights. For the sake of simplicity we will set C = A22 and 1 = γ +λ ,γ > 0, λ > 0. H−1 can
be written as

(
A1,1 A1,2

A2,1 A2,2

)
+




0 0

0 G−1
w −A−1

2,2


 (2)

(Christensen and Lund 2010) or as H̃−1 (Strandén et al. 2017)

(
A1,1 A1,2

A2,1 A2,2

)
+




0 0

0 G−1
w − (A2,2 −A2,1(A1,1)−1A2,1)


 , (3)

where A:,: is a respective block of the inverse of A. However, replacing Gw with γMM′ + λC in
equation 1 and inverting the resulting matrix yields matrix Ψ−1

(
A1,1 A1,2

A2,1 A2,2

)
+

(
0 0

0 λ−1(A2,2 −A2,1(A1,1)−1A2,1)

)
−

(
0 0

0 M∗M∗′

)
(4)

where M∗ = M†(Ku)
−1, M† = (λ−1(A2,2 −A2,1(A1,1)−1A1,2))M, (Ku)

−1 is an upper triangular
matrix derived from K−1 = (Ku)

−1(K
′
u)

−1, K = (γ−1D−1 + M′M†) and D−1 is the inverse of D
which is an arbitrary but symmetric and positive definite matrix of dimension nm ×nm (Mäntysaari
et al. 2017). Further D may contain marker specific weights, or allele frequencies if M is not scaled.
Given matrices H−1, H̃−1 and Ψ−1 one can define three different BLUP models, SS-H-BLUP, SS-H̃-
BLUP, and SS-T-BLUP, which differ solely in which formulation of the inverse of H is used (H−1,
H̃−1 or Ψ−1). However, the different formulations will have consequences for solver preparation
and iteration time.

Data. The SS-H-BLUP, SS-H̃-BLUP and SS-T-BLUP models were applied to an Australian An-
gus data set currently used in commercial genetic evaluation. The data set comprised of 35 traits
with a total of 9,565,814 records across all traits, and 2,621,403 individuals in the pedigree which
allowed for multiple sire mating. The number of animals with genotypes was 58,705 comprising
of SNP marker genotypes of various densities and panel manufacturers imputed to a common set
of 56009 SNPs. To increase the computational load additional 91,295 genotypes (data set 150k)
and 341,295 genotypes (data set 400k) were artificially imputed in a combined regression-sampling
approach. The 400k data set was only used for SS-T-BLUP because the other models were compu-
tationally infeasible.

The multi-trait model included a single fixed factor per trait, 27 correlated genetic factors, 27
correlated genetic groups factors with 19 genetic groups each, 3 correlated maternal permanent
environmental factors and 22 correlated sire-by-herd factors. The total number of equations was
76,823,378. λ and γ were set 0.05 and 0.95, respectively.

Software. The system of equations was solved with AGBU’s current large scale linear mixed
model library solver which uses the preconditioned gradient algorithm (PCG) for iteratively solving
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linear mixed models and integrates Intel(R) MKL(R), version 2017 update 8. Convergence was
achieved when the L2 norm of PCG residuals scaled by the L2 norm of the mixed model equations’
right hand side was ≤ 2.68e−9. All computationally relevant integer and all real numbers were
represented in a 64 bit. Computations for the 150k data set were carried out on a computer with two
sockets each carrying an Intel(R) Xeon(R) CPU E5-2697 v3 with 2.60GHz, a total of 28 cores, and
528GB of random access memory (RAM). Computations for the 400k data set were carried out on
a computer with two sockets each carrying an Intel(R) Xeon(R) CPU E5-2697 v4 with 2.30GHz, a
total of 36 cores, and 256GB of RAM.

RESULTS

Table 1: Processing time in real time seconds (hours) for various steps when iteratively solving
a SS-T-BLUP, SS-H-BLUP and SS-H̃-BLUP model using an Australian Angus BREEDPLAN
dataset

task SS-H-BLUP1
150 SS-H̃-BLUP150 SS-T-BLUP150 SS-T-BLUP2

400

G 1,756 1,756 - -
A2,2 250 250 - -
G−1 9,150 9,150 - -

A2,2
−1 3,500 - - -

M† and K - - 3,422 4,210
KL - - 352 320
M∗ - - 629 1170

A−1
2,2 diag3 - 262 262 219

preparation 14,656 (4) 11,418 (3.2) 4,665 (1.3) 5,919(1.6)

iteration 7.5 11.2 8.6 12

∑ iteration 19,123 (5.3) 28,716 (7.9) 22,134 (6.1) 30,809 (8.5)

run time 33,779 (9.4) 40,134 (11.1) 26,799 (7.4) 36,728 (10.2)
1: 150,000 individuals with genotypes. 2: 400,000 individuals with genotypes. 3: sampling of diagonal elements of A−1

2,2

using 10,000 samples.

Results for the different parts of the setup and solving steps are provided in Table 1. SS-H-
BLUP150, SS-H̃-BLUP150, SS-T-BLUP150 and SS-T-BLUP400 converged in equal number of rounds
which was �2,560. The major differences between SS-H-BLUP150, SS-H̃-BLUP150 and SS-T-
BLUP150 are the computation time for run preparation and the computation time per round of it-
eration. The preparation time for model specific parts for SS-T-BLUP150 was 1.3 hours, for SS-H-
BLUP150 4 hours and for SS-H̃-BLUP150 3.2 hours. Thus, compared to SS-T-BLUP, SS-H-BLUP
needed 3 times and SS-H̃-BLUP 2.5 times more real time for all necessary pre-calculations. In terms
of time per iteration SS-H-BLUP150 took 7.5 real time seconds for a single round of the precondi-
tioned gradient solver, followed by SS-T-BLUP150 with 8.5 real time seconds. With 11.2 seconds
per iteration SS-H̃-BLUP was slowest. Due to the huge time savings for run preparation and only
a slightly longer time while iterating SS-T-BLUP150 needed only 80 % of the total processing time
required by SS-H-BLUP150 and only 66 % of SS-H̃-BLUP150. The last column in Table 1 shows the
computing time for SS-T-BLUP400.
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DISCUSSION
SS-T-BLUP has been proposed as a single step model which can facilitate data sets where the

number of genotyped individuals exceeds the number of markers and the G matrix is algebraically
not invertible. These situations become more common in commercial plant and livestock species
where individuals are genotyped with low to medium density SNP chips (Mäntysaari et al. 2017).
This is achieved by reformulating the “H” matrix representation such that neither the G or A2,2
matrices nor their inverses need to be built or approximated. As shown by the results, SS-T-BLUP
clearly outperforms SS-H-BLUP in terms of total processing time which is mainly due to the huge
computational cost for setting up G, A2,2 and inverting both as the inversion cost grows cubicly with
ng, whereas at a constant nm the cost for generating M† grows less than linearly and the cost for
K grow (nm × nm + 1)/2× ng. In terms of seconds per iteration the main difference between SS-
T-BLUP, SS-H-BLUP and SS-H̃-BLUP is caused by the operations of Ψ−1, H−1 and H̃−1 times a
vector y. This can be narrowed down further to a single matrix vector operation ∆H−1

2,2 y = (G−1
w −

A−1
2,2)y in SS-H-BLUP, or one matrix vector operation ∆H−1

2,2 y = G−1
w y and one solver operation

y = (A2,2 − A2,1(A1,1)−1A1,2)x in SS-H̃-BLUP, or two matrix vector operations M�′M�y and one
solver operation y = (A2,2−A2,1(A1,1)−1A1,2)x in SS-T-BLUP. In the example given here operations
∆H−1

2,2 y and G−1
w y required ≈ 2.25e10 floating point operations (FLOPs), whereas operation M†′M†y

required ≈ 1.5e10 FLOPs. SS-T-BLUP and SS-H̃-BLUP have additional cost for solving y= (A2,2−
A2,1(A1,1)−1A1,2)x which offsets the FLOP advantage of SS-T-BLUP and produce an additional
overhead for SS-H̃-BLUP. For SS-H̃-BLUP these disadvantages whilst iterating are not balanced
due to not inverting A2,2, because its inverse can be calculated much quicker than the inverse of
G, resulting in almost 20% more total processing time compared to SS-H-BLUP. For SS-T-BLUP
the combination of an advantage in terms of FLOPs, extra burden for solving and huge saving in
preparation time resulted in a 20% and 33% decrease in processing time compared to SS-H-BLUP
and SS-H̃-BLUP, respectively.

CONCLUSION
These results support the conclusion that SS-T-BLUP provides a feasible algorithm to calculate

exact solutions for estimated breeding values when the number of genotyped individuals exceeds the
number of markers. A limitation to the number of genotyped individuals is solely set by the avail-
able RAM. Therefore SS-T-BLUP allows solving Single Step equation systems iteratively without
generating G or A2,2 or their inverse matrices or any approximation of these matrices.
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