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SUMMARY
Genomic selection (GS) using dense SNP panels was first implemented in 2009 for dairy cattle. 

Since then, GS has been extended to other livestock. However, different problems and challenges 
are always encountered during the implementation of GS in each population. In this paper, we show 
the issues in the implementation of GS and how they have been successfully solved in beef and dairy 
cattle, pigs, chicken, and fish. We also discuss changes in current methods and development of new 
algorithms to deal with large genomic data. Overall, complications for GS include, but are not lim-
ited to, selective genotyping, computing limitations, convergence problems especially for complex 
models, compatibility between pedigree and genomic information, among others.

BACKGROUND
Soller and Beckmann (1983) hypothesized, in the early 1980’s, that DNA markers could be useful 

in constructing more precise genetic relationships, detecting causative variants, and determining par-
entage. After the first draft of the human genomic project was published in 2001 (The International 
SNP Map Working Group 2001), single nucleotide polymorphism (SNP) became the most important 
source of genome sequence variation, and therefore, the most important DNA marker. Concurrently, 
Meuwissen et al. (2001) anticipated that genomic information could help animal breeders to gen-
erate more accurate breeding values if a dense SNP assay that covered the entire genome could be 
constructed. It took almost 8 years for the first dense SNP assay to become available, and this was 
for dairy cattle (Matukumalli et al. 2009).

In January of 2009, researchers from AGIL-USDA released the first official genomic evaluation for 
Holstein and Jersey in the USA. This implementation brought a lot of excitement, especially because 
the top bull in the evaluation had no daughters with milking records, meaning his genetic merit was 
computed based on pedigree and genomic information. The superiority of this very bull was later 
confirmed when his progeny records became available. This endorsed the hypothesis that Meuwissen 
et al. (2001) had tested based on simulated data: the genetic merit of young animals can be computed 
with high accuracy if they are genotyped and SNP effects are available from a reference population.

With the release of genomic predictions based on dense SNP assays for Holsteins in the USA, 
the race for the implementation of genomic selection (GS) in livestock became official. Essentially, 
two main methods for genomic evaluation were developed: multi-step and single-step. The multi-
step method was the first to be implemented (VanRaden 2008). The main advantage of the multi-step 
approach is that the traditional BLUP evaluation is kept unchanged and GS can be carried out by 
using additional analyses; however, only genotyped animals have genomic EBV (GEBV). As a result, 
several adjustments were proposed, especially in dairy cattle, to make EBV for non-genotyped ani-
mals comparable to GEBV under multi-step evaluations (Wiggans et al. 2011; Wiggans et al. 2012).

Intending to solve incompatibility problems and to reduce the burden in obtaining genomic pre-
dictions when only a fraction of animals is genotyped, Misztal et al. (2009) and Legarra et al. (2009) 
proposed a method that combines phenotypes, pedigree, and genotypes into a single evaluation. 
This method is called single-step genomic BLUP (ssGBLUP) and replaces the pedigree relationship 
matrix in the traditional BLUP by a realized relationship matrix (H), which combines pedigree and 
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genomic relationships. Another class of single-step was also proposed by Fernando et al. (2014), 
which is based on a marker effect model and is called single-step Bayesian regression (ssBR). Under 
the same assumptions (e.g., all SNP have non-zero effect and constant variance), ssGBLUP and ssBR 
are equivalent models (Gao et al. 2018).

Over the past 4 or 5 years, ssGBLUP has become the preferred method for genomic evaluation in 
several species, namely beef cattle (Lourenco et al. 2015a), dairy cattle (Vukasinovic et al. 2017), pigs 
(Forni et al. 2011; Lourenco et al. 2016), broilers (Chen et al. 2011; Lourenco et al. 2015b), layers 
(Yan et al. 2018), dairy sheep and goat (Rupp et al. 2016), Australian sheep (Brown et al. 2018), and 
fish (Garcia et al. 2018). Possibly, in the near future, the great majority of genomic evaluations will 
all be based on single-step methods.

Although the idea and theory behind ssGBLUP are easily understandable, and the method seems 
to be simple because it just requires the change in the relationship matrix, its implementation for 
official genomic evaluations is quite challenging and demands several data-dependent adjustments. 
It is worthwhile to remember that even a small change to the genetic evaluation system can create 
issues. For example, a simple change in variance components can cause convergence problems and 
changes in scaling. Usually, the issues and challenges encountered during the change from traditional 
or multi-step evaluations to single-step are not disclosed. However, showing issues and strategies to 
solve them can help troubleshooting future implementations. In this paper, we show the problems 
in the implementation of GS and how they have been successfully solved in beef and dairy cattle, 
pigs, chicken, and fish.

GENOMIC STRATEGIES 
Beef cattle. In 2009, Angus Genetics Inc. started to run multi-step genomic evaluations for 

American Angus Association (AAA) using a correlated approach described by Kachman (2008). In 
this approach, the trait phenotype and the direct genomic values (DGV) calculated based on SNP 
effects are used as phenotypic information in a 2-trait model, where heritability for DGV is assumed 
to be 0.99. Restricted maximum likelihood (REML) estimates are then obtained. Genetic correlations 
between each trait and DGV reflect accuracy of DGV, and solutions for the first trait are genom-
ic-enhanced EBV. The drawback of this method is that it doubles the number of traits in the model. 
Additionally, genetic correlations between each trait and DGV can be overestimated, indicating the 
genomic information is explaining more of the genetic variance than expected, which can inflate 
predictions. Figure 1 shows genetic trends for marbling using traditional BLUP and the multi-step 
correlated approach. Inflated genetic trends for multistep predictions, together with big fluctuations 
for predictions every time SNP effects were recalculated (i.e., during calibration) and re-ranking of 
high accuracy bulls in subsequent evaluations urged Angus Genetics Inc. to find another method for 
their genomic evaluation.

Figure 1. Genetic trends for marbling using traditional BLUP and the multi-step correlated 
approach in American Angus
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Scaling factors and inbreeding. In 2014, we started testing ssGBLUP for growth and calving 
ease (CE) models in the American Angus population. Several datasets were used, but the first one 
was for growth traits and calving ease and comprised 8 million animals in the pedigree, along with 
6 million birth (BW) and weaning weight (WW) records, 3.4 million records for post-weaning gain 
(PWG), 1.3M CE records, and genotypes for 52k animals. The first issue observed was the inflation 
of GEBV in a validation test. When adjusted phenotypes for animals considered young in 2013, but 
with phenotypes in 2014, were regressed on GEBV, regression coefficients were lower than 1. To 
solve this problem scaling parameters can be used in H-1 (Aguilar et al. 2010; Christensen and Lund 
2010; Tsuruta et al. 2011):

​​H​​ -1​ = ​A​​ -1​ +​[​0​ 
0
​ 0​  τ ​G​​ -1​ – ω ​A​ 22​ 

-1 ​​]​​
where ​​A​​ -1​​ is the inverse of the pedigree relationship matrix, ​​G​​ -1​​ is the inverse of the genomic rela-
tionship matrix, and ​​A​ 22​ 

-1 ​​ is the inverse of the pedigree relationship matrix among genotyped animals; 
τ and ω were used to rescale the amount of information in ​​G​​ -1​​ and ​​A​ 22​ 

-1 ​​, respectively. Primarily, ω 
controls inflation due to incompleteness of pedigree while τ controls additive genetic variance. Based 
on validation, we found the best combination of τ and ω for this data was 1.0 and 0.7. However, scaling 
parameters are completely ad-hoc and should be avoided generally. In the original implementation 
of ssGBLUP (Aguilar et al. 2010) inbreeding for ​​G​​ -1​​ and ​​A​ 22​ 

-1 ​​ was considered, but not for ​​A​​ -1​​. After 
inbreeding was included in the computation of ​​A​​ -1​​, ω lower than 1 was not needed anymore for this 
beef cattle data. Figure 2 shows coefficients for the regression of adjusted phenotypes on GEBV for 
BW, WW, PWG when inbreeding for ​​A​​ -1​​ is considered and ω is lower than 1. It is clear that GEBV 
are deflated if ω is lower than 1, proving that inbreeding in ​​A​​ -1​​ is enough to avoid inflation in this 
AAA dataset. Therefore, current official AAA evaluations use τ=ω=1.

Figure 2. Regression coefficients (b1) for birth weight (BW), weaning weight (WW) and post-wean-
ing gain (PWG) with varying ω

Selective genotyping. Regarding the advantages of using genomic information, the average gain 
in predictive ability for growth traits, when moving from traditional BLUP to ssGBLUP, was 24%. 
In contrast, the gain in prediction accuracy for CE was only 8%, going from 0.12 to 0.13. This small 
increase in predictive ability is possibly because animals with difficult calving are unlikely to be 
retained for breeding and therefore would not be genotyped on a regular basis. In fact, only 0.35% of 
the animals with difficult calving were genotyped. Therefore, selective genotyping can compromise 
the gains that can be obtained with genomics and can also introduce some pre-selection bias into 
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the evaluations. Similar problems occur for traits related to survival or other specific phenotypes 
(e.g., animals with undesirable phenotypes or dead). This means some traits might need a controlled 
reference set of animals, rather than relying on Industry genotyping strategies which are influenced 
by the perceived value of animals.

External information. For the growth model, another issue was related to the inclusion of external 
information in ssGBLUP. For traditional evaluations, the external EBV from Red Angus is used as 
prior information in the right hand side of the mixed model equations (MME), and the reliability is 
added to the pedigree relationships among external animals in the left hand side of the MME (Legarra 
et al. 2007). We changed the computing algorithm to support both genomic and external information, 
and the implementation of a genomic multi-breed model increased the computing time only by 2.5 
hours, compared to a genomic single-breed model.

Many more genotyped animals. On a weekly basis, more than 2k genotyped animals are added to 
the AAA database. From July of 2014 to March of 2019, the number of genotyped animals increased 
from 82k to 627k. The most computationally expensive operation in ssGBLUP is the inversion of G 
and A22. This operation has an approximately cubic cost with the number of genotyped animals. With 
efficient computing algorithms, matrix inversions are feasible for up to 150,000 genotyped animals.

To overcome the limitation set by the number of genotyped animals in ssGBLUP, Misztal et al. 
(2014) proposed the algorithm for proven and young (APY) animals to construct G-1 without having 
to explicitly invert G. The logic behind the construction of ​​G​ APY​ −1  ​​ is that the genotyped animals are 
split into core (c) and noncore (n), and breeding values for noncore animals (​​u​ n​​​) are functions of 
breeding values of core animals (​​u​ c​​​):

​​u​ n​​ = ​P​ nc​​ ​u​ c​​+ ​Ψ​ n​​ ​

where ​​P​ nc​​​ is a matrix that relates breeding values for noncore to core animals, and ​​Ψ​ n​​​ is a diagonal 
matrix with estimation errors. The ​​G​ APY​ −1  ​​ can be constructed as:

​​G​ APY​ −1  ​ =​[​​G​ cc​ 
-1 ​

​ 
0
​ 

0
​ 

0
​]​+​[​​-G​ cc​ 

-1 ​ ​G​ cn​​​ 
I
  ​]​ ​M​ nn​ 

-1 ​​[​​-G​ nc​​ ​G​ cc​ 
-1 ​​  I​]​​Ψ

with ​​m​ ​nn​ ii​​
​​  =  ​g​ ii​​ -  ​g​ ic​​ ​G​ cc​ 

-1 ​ ​g​ ci​​​. The APY algorithm creates a generalized sparse inverse of G at approx-
imately a linear cost in computing and storage. However, if ​​G​ APY​ −1  ​​ is efficiently computed but ​​A​ 22​ 

-1 ​​ is 
not, ssGBLUP still cannot be used for over 150,000 genotyped animals. To avoid explicit inversion 
of ​​A​ 22​​​, Masuda et al. (2017) proposed to compute an efficient inverse indirectly as a product of sparse 
matrices:

​​A​ 22​ 
−1​  =  ​A​​ 22​ − ​A​​ 21​ ​​(​A​​ 11​)​​​ −1​ ​A​​ 12​​

where ​​A​​ 11​​, ​​A​​ 21​​, and ​​A​​ 22​​ are portions of ​​A​​ -1​​for non-genotyped, between genotyped and non-genotyped, 
and for genotyped animals, respectively.

Without APY, ssGBLUP would not be feasible for the AAA evaluations. However, identifying core 
animals was not an easy task at the beginning of the implementation of ssGBLUP for AAA. Choosing 
core animals randomly or based on EBV accuracy resulted in correlations >0.99 between GEBV from 
regular and APY ssGBLUP, providing the core group had a minimum of 10k animals. Less optimal 
core definitions caused convergence issues. We ultimately chose to select core animals based on EBV 
accuracy for the official evaluations because those animals would have more progeny recorded. No 
differences were found in convergence and computing time for the growth model However, for the 
carcass model, which combines 9 different traits, some of them are sparsely recorded (e.g., fat and 
ribeye area), using a random core instead almost halved the number of rounds to convergence. Since 
2017, Angus Genetics Inc. has been using APY ssGBLUP for weekly evaluations of around 18 traits, 
using a single set of core animals assigned based on EBV accuracy.
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Computing SNP effects in ssGBLUP. Besides the official national Angus evaluation, genomic 
predictions or direct genomic values (DGV) based on SNP effects are provided for non-registered 
animals, usually females, for herd management. Although ssGBLUP provides GEBV as final output, 
estimates of SNP effects (a) can be obtained by back-solving GEBV (Wang et al. 2012):

​​ ̂  a​ = ​kZ′G​​ −1​​ ̂  u​​

where: k is the ratio of SNP to additive genetic variance, Z is a centred matrix of SNP effects, and u is 
a vector of GEBV. As the calculation of SNP effects is done by standalone software from the BLUPF90 
family (postGSf90), there is a need to save ​​G​ APY​ −1  ​​ to disk. However, even half stored requirements 
were large. To overcome this problem, we investigated the use of the subset of ​​G​ APY​ −1  ​​ only for core 
animals (​​G​ CC​ −1 ​​). Correlations between GEBV and DGV obtained with ​​G​ APY​ −1  ​ ​or ​​G​ CC​ −1 ​​ were greater than 
0.98 using the 2014 dataset. However, as the number of genotyped animals increased, we observed a 
decrease in correlation when ​​G​ CC​ −1 ​​ was used. Based on that, we changed the algorithm in postGSf90 to 
work with blocks of ​​G​ APY​ −1  ​​ instead of having to allocate the full matrix in memory. The new software 
requires less memory and is extremely fast.

Accuracy as a measure of GEBV risk. One of the benefits of using genomic information is to 
increase breeding value accuracy. Accuracies are calculated based on prediction error variance (PEV) 
and can be obtained from the inverse of the LHS of MME. If the number of animals in the pedigree is 
large, the inverse is not computationally feasible and an approximation has to be used. Approximating 
accuracy of GEBV requires the calculation of the combined contributions due to phenotypes, pedi-
gree, and genomic information. An algorithm to approximate genomic contributions was developed 
based on diagonals of G and the average traditional accuracy for genotyped animals. Compared to the 
approximation based on pedigree and phenotypes only, the increase in computing time was irrelevant. 
Another advantage of this algorithm is that the diagonal of G or GAPY can be easily saved and requires 
a small disk space. Correlations between accuracy from the new algorithm and true accuracy from 
PEV were higher than 0.85 for growth traits, using a sample dataset.

Dairy cattle. Single-step GBLUP is currently used by Zoetis for genomic evaluations of wellness 
traits in dairy cattle. Those traits have a binary response and each one is currently analysed separately 
using a univariate threshold model. Heritabilities are low, ranging from 0.06 to 0.08, and trait inci-
dences vary from 2% to 25% (Vukasinovic et al. 2017). As for beef cattle, changes had to be made to 
accommodate an increasing number of genotyped animals. Although all models were single-trait, the 
time to convergence with APY core animals selected based on their accuracy of EBVs, was between 24 
and 50 hours, which is un-acceptable. When the core animals were randomly selected, the computing 
time was between 4 and 10 hours. As was previously observed for carcase traits in beef cattle, the 
choice of core animals becomes an issue when few genotyped animals have phenotypes. Probably, ​​
G​ APY​ −1  ​​ with random core is better conditioned than with high EBV accuracy core.

Although official genomic evaluations in the US are still done with multi-step methods, several 
tests have been done by our group to investigate the feasibility of ssGBLUP for dairy cattle using 
data provided by the US Holstein Association and the Council on Dairy Cattle Breeding (CDCB). 
A common problem is the inflation of GEBV. Although using inbreeding for the calculation of A-1 
eliminated inflation in the beef cattle evaluation, the same was not true for dairy evaluations. This is 
because the missingness of pedigree is greater in dairy cattle data. In the initial tests before imple-
menting inbreeding, convergence could only be reached with ω<1.

In BLUP-based methods, missing parents can be modelled by unknown parent groups (UPG). 
Such groups are also known as phantom parents or genetic groups, and are used to represent the 
average level of breeding value in a group where parents were missing. In ssGBLUP, when UPG are 
applied only to A, convergence may fail or the convergence rate can be slow. Alternatively, UPG can 
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be assigned to both A and A22. For US Holstein with 18 type traits, using 10M animals in the pedigree 
and 570k genotyped, we observed that adding UPG for A22 helped to reduce inflation. However, the 
least GEBV inflation for young genotyped bulls was observed when inbreeding for UPG was also 
considered and the genetic variance was halved (Figure 3). The problem of reducing additive genetic 
variance is the shrinkage of GEBV for all animals, not only for young genotyped bulls. According 
to VanRaden et al. (2014), a reduction in genetic variance for yield traits reduced inflation caused by 
the inclusion of female genotypes.

Figure 3. Average regression coefficient (b1) and reliability (Rel) for 18 type traits in US Holsteins 
A22 inb = inbreeding in ​​A​ 22​ 

−1​​ + UPG; A A22 inb = inbreeding in A-1 and ​ ​A​ 22​ 
−1​​ + UPG; inb UPG = 

inbreeding for UPG; Inb UPG 50% = inb UPG with 50% reduction of additive genetic variance

The US dairy industry has collected almost 3M Holstein genotypes by April 2019 (https://queries.
uscdcb.com/Genotype/counts.html). Only 11% of those are for males and over 75% of the females will 
never have phenotypic records. Initial ssGBLUP tests using 2.3M genotyped animals, 13.5M animals 
in the pedigree, and 11M records on 18 type traits took 3 days to converge and required over 300 GB 
of memory. This was using APY with 15k randomly chosen core animals. Currently, the ssGBLUP 
software used to solve large systems of equations is undergoing changes for the implementation of 
a message-passing interface (MPI), which uses multi-processor architecture, allowing a higher level 
of parallelization. After these changes are completed, the convergence for the 18 type trait model is 
expected to be reached within 36 hours using about 30 GB of memory.

Pigs. The biggest challenge for genomic evaluations in pigs is to have accurate predictions for 
multi-breed or crossbred populations. In within breed ssGBLUP, G is constructed based on the average 
allele frequency. However, different breeds may have different allele frequencies, and construction 
of G must be modified. Using 2 breeds and their F1, we observed negative genomic relationships 
between breeds, which is an indicator of distinct allele frequencies. Breed-specific allele frequencies 
were subsequently used to centre and scale G in simulated and real pig datasets (Lourenco et al. 
2016). Although the average relationship between the 2 breeds was zero when using breed-specific 
allele frequencies, accuracy of GEBV was similar to the default scenario that used across-breed allele 
frequencies to construct G. If there is a dominant breed, meaning one breed has many more geno-
typed animals than the other, the largest breed will likely have more accurate predictions. To avoid 
this issue, G can be constructed assuming SNP are not shared among breeds, which would create a 
block-diagonal G; however, this is less straightforward when genotypes for crossbreds are included 
in the evaluation (Steyn et al. 2019).

When APY ssGBLUP is used in multi-breed or crossbred evaluations, the choice of core animals 
becomes even more complex. This is because the appropriate number of core animals depends on 
the theory of limited dimensionality of genomic information and chromosome segments, which 
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relies on effective population size. The suitable number of core animals in multi-breed populations 
can be accessed by the number of eigenvalues explaining 98% of the variance in G, considering all 
breeds together. If breeds are completely independent, the expectation for the number of eigenvalues 
across 2 breeds is the sum of eigenvalues within each breed (Figure 4). We observed that comparing 
the number of eigenvalues across and within breeds can indicate the ability to perform across-breed 
predictions because chromosome segments are shared (Pocrnic et al. 2019).

Figure 4. Number of eigenvalues explaining 98% of the variance of G across and within breeds 
(B1 and B2) and crossbred (F1)

Large pig breeding companies usually buy small farms/companies and combine the populations 
into a single evaluation. Assigning UPG for each population can help to account for the difference 
in base population. However, UPG are usually considered as fixed effects and a reasonable number 
of observations is needed for their accurate estimation. Datasets coming from small farms may have 
insufficient amount of information linked to UPG, leading to estimation errors and inflation of GEBV. 
In such a case, we observed that using random instead of fixed UPG solved estimation problems 
related to poor UPG connections (Pocrnic et al. 2018).

Poultry. Inflation of GEBV is not so evident in chicken datasets because old generations are 
removed and genotyped animals have complete pedigree. In fact, only 2 to 4 years of data are retained 
for genetic and genomic evaluation in chickens. However, in the first tests of ssGBLUP in chicken 
data (from Cobb-Vantress), back in 2013, we observed inflated genetic trends for GEBV compared 
to EBV, especially for young animals. The sources of this inflation were identified to result from 
the inclusion of unmapped SNP (i.e., mapped to chromosome 0) in the evaluation, the presence of 
imputation errors, and incorrectly labelled samples. If the imputation uses a family-based method but 
the pedigree has errors, the imputation can be compromised, resulting in low correlation between G 
and A22. This outcome illustrates more generally that quality control of SNP, samples, and genomic 
relationships is an important step before genomic evaluation, as small errors in the SNP data can be 
propagated, generating biased estimates. 

Another issue observed in chicken data was the lower predictive ability (i.e., correlation between 
adjusted phenotypes and EBV or GEBV) for females compared to males for a growth trait, even though 
females had almost twice the number of genotypes. For an efficiency trait with the same amount of 
information and similar heritability, predictive ability was comparable between males and females. 
Separate genetic trends for males and females showed stronger selection for females than males in 
the growth trait but a similar trend in the efficiency trait (Figure 5). This shows that predictive ability 
takes the selection intensity into account and different predictive ability is expected if males and 
females have distinct selection differentials.
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Figure 5. Accuracy and genetic trends for growth and efficiency in chickens

Fish. In fish production, several families may be raised in common ponds, making the identifi-
cation of individuals difficult. Even though low density microsatellite panels are used for parentage 
determination with relatively high accuracy (Waldbieser and Bosworth 2012), pedigree errors still 
exist. As fish families are large, a single mistake in parentage assignment can be multiplied to thou-
sands of individuals. In the implementation of genomic selection for catfish in the USA (ARS-USDA 
Warmwater Aquaculture Research Unit), we were able to identify mis-assigned parentage based on 
SNP markers. After pedigree corrections, heritability for carcass weight was adjusted from 0.27 to 
0.21. Correcting variance components avoided the overestimation of genetic gains.

Another issue present in fish populations is the choice of individuals to be genotyped, given that 
genotyping is still expensive and full or half-sib families are large. We decided to genotype 40 fish 
per family, in a total of 75 families. As carcass weight is one of the most important traits in fish, 
genotyped individuals were also slaughtered to evaluate whether half or full-sib phenotypes would be 
enough to produce a high predictive ability for selection candidates. Using own genomic information 
combined with phenotypes and genotypes on siblings provided a 22% increase in predictive ability 
for carcass weight, compared to traditional BLUP.

Assessing predictive ability for disease traits either in fish or other species is quite challenging 
because phenotypes have a binary nature and breeding values have a normal distribution. Therefore, 
correlations between adjusted phenotypes and GEBV are usually very small or negative. Addition-
ally, the regression coefficients are much lower than 1, which may not support the use of genomic 
selection. For binary and categorical traits, other validation methods may be more appropriate than 
predictive ability. For the initial tests on the feasibility of genomic selection for columnaris disease 
resistance in rainbow trout in the USA (ARS-USDA Cool and Cold Water Aquaculture), we adopted 
the LR validation (Legarra and Reverter 2018). This method is based on comparisons between 
complete and partial predictions. The relative increase in accuracy of GEBV compared to EBV was 
40%, which encouraged the adoption of genomic selection to predict disease resistance in rainbow 
trout (Silva et al. 2019).
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Common problems in large-scale genomic evaluations. Although different species usually 
require different strategies, common issues emerge when using large datasets. For ssGBLUP evalu-
ations using a large number of genotyped animals, APY is one of the options. Another option is the 
ssGTBLUP (Mantysaari et al. 2017) that uses Woodbury formulas and requires only the inverse of 
a matrix with the size of the number of SNPs. An equivalent model that can also be used for large 
data is ssBR or hybrid model (Fernando et al. 2014), where SNP effects are estimated regardless of 
the number of genotyped animals.

When APY is used, even though the correlation between GEBV from regular ssGBLUP and 
APY ssGBLUP is greater than 0.99 when the appropriate number of core animals is used, re-ranking 
is still observed when different core groups are used. We investigated in beef and dairy cattle, and 
pig datasets different definitions of core and random core groups to identify which animals have the 
biggest changes in GEBV and how those changes can be minimized. In all datasets, larger changes in 
GEBV by using different core groups were observed for animals with lower accuracy. The observed 
changes relative to standard deviations of GEBV were, on average, 5%, but ranged from 0 to 100%. 
Increasing the number of core animals beyond the optimal value helped to asymptotically reduce 
changes in GEBV. Although core-dependent changes in GEBV exist, they are small and can be 
reduced with larger core groups.

Accounting for selected sequence variants in GBLUP-based methods. As sequence data is slowly 
becoming available for livestock, there is a question whether GBLUP-based methods can account for 
selected sequence variants and what is the possible gain in accuracy. Although the default assumption 
of GBLUP methods is that all SNP explain the same proportion of variance, it is possible to weight 
SNP differently. Recently, we observed that the increase in accuracy by SNP weighting is smaller 
in large populations, compared to small populations. This is because large genotyped populations 
allow more accurate estimation of chromosome segment effects; therefore, there is no advantage in 
selecting SNP and tagging segments with larger value (Lourenco et al. 2017).

Using a US Holstein dataset, Fragomeni et al. (2019) tested the performance of GBLUP and 
ssGBLUP when using nearly 54,000 SNP and when adding 17,000 significant variants discovered 
from a GWAS using sequence data involving 33 traits (VanRaden et al. 2017). Although VanRaden et 
al. (2017) reported an increase in reliability of GEBV of 4.3 points for stature by using non-linearA 
weights (i.e., a fast version of BayesA) in a multistep scenario, no gain was observed by Fragomeni 
et al. (2019) using either quadratic or non-linearA weight in GBLUP with heterogeneous residual 
variance and ssGBLUP. This is possibly because the amount of data used in ssGBLUP overwhelms any 
a priori assumption made about SNP effects, making this method less sensitive to SNP weighting in 
the presence of large data. Another hypothesis to explain the steady reliability is that not all causative 
variants were present among the 17,000 significant SNP. In a simulation study done by Fragomeni et 
al. (2017), including all simulated causative variants with respective true weights among 60k SNP, 
increased accuracy of ssGBLUP GEBV from 0.49 to 0.94. Although causative variants can be included 
in ssGBLUP assuming different weights for SNP, maximizing the accuracy of GEBV would require 
the true identification of all causative variants and their substitution effect.

CONCLUSIONS
Although the implementation of genomic selection seems to be straightforward, given genotypes 

are added to phenotypes and pedigree that are already in the evaluation system, several issues and 
challenges were raised during the initial application of this methodology to breeding programs of 
several species. Fortunately, solutions to most of the problems have come in a fast pace, enabling 
the widespread use of this methodology. Overall, the sources of problems include missingness of 
pedigree, selective genotyping, increasing number of genotyped animals, incompatibility between 
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pedigree and genomic information, and difficulty in assessing predictive ability of genomic models 
for specific traits. It is expected that more issues will rise, and most of them may be related to the 
amount, type, and way the genomic data are being generated. 
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