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SUMMARY
The 1000-Bull-Genome (1KBull) project contains whole genome sequence data of thousands of 

cattle with different breeds from various countries. While most 1KBull cattle do not have phenotypic 
data, different breeds display distinct phenotype due to artificial and/or natural selections. For example, 
the milk production of Holstein cattle is expected to be higher than that of Angus cattle. Such expected 
phenotypic differences between breeds may be useful for validating the informativeness of a set of 
prioritised variants. Via meta-analysis of GWAS with 17.6 million imputed sequence variants with 
over 44,000 Australian dairy cattle, we prioritised a set of 92.5K pleiotropic variants associated with 
multiple traits including milk production, reproduction, management and linear assessment. With 
these pleiotropic variants, the genomic best linear unbiased prediction (gBLUP) was used to estimate 
dairy-trait breeding values (gEBV) for 2,334 1KBull cattle (Run 6). Based on principal components 
analysis, the dairy-trait gEBVs separated the dairy from beef breeds as well as the separation using 
whole genome sequence data. For individual trait gEBVs in the 1KBull cattle, while milk, protein 
and fat yield, somatic cell count, stature and angularity were significantly higher in dairy than in 
beef cattle, the milk protein and fat percentages, muzzle width and teat length were significant lower 
in the dairy than in the beef cattle. Compared to 1KBull Jersey cattle gEBVs, Holstein cattle had 
significantly higher milk, protein and fat yield and stature, but significantly lower fat and protein 
percentages and somatic cell count. Our study provides valuable insights into the genomic predic-
tion of breed differences using within-breed trained equations. Our work also provides alternative 
validation strategies for prioritised markers.

INTRODUCTION
The 1000-Bull-Genome (1KBull) project collects whole genome sequence data worldwide via 

donations from consortium members. Since 2012 (Daetwyler et al. 2014), the dataset has grown to 
over 2,000 cattle from more than 100 breeds of Bos taurus and Bos indicus. Up to 44 million sequence 
variants have been identified in the 1KBull cattle and these variants are used as the basis for sequence 
variant imputation in large cattle populations. Large cattle populations with sequence variants have 
facilitated genome-wide association studies (GWAS) (Bouwman et al. 2018) and genomic prediction 
(VanRaden et al. 2017) of complex traits. Here we examine a new use for the 1KBull database; the 
prediction of trait differences between breeds.

Genomic prediction is usually used to predict differences in breeding value within a breed and it is 
unknown if it would correctly predict differences between breeds. One of the aims of this paper is to 
test the ability of within breed genomic prediction to predict differences between breeds. We develop 
prediction equations within breeds of dairy cattle and combine them with the genotypes of bulls in 
the 100KBull database to predict the differences between breeds. These predicted breed differences 
are compared to expectations such as higher milk yield in dairy breeds than in beef breeds. 
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MATERIALS AND METHODS
The 1KBull data used in this study was part of the Run 6 (http://www.1000bullgenomes.com/). 

In total the whole genome sequence data of 2,334 Bos taurus cattle were used. Dairy and beef cattle 
breeds and their sample sizes were defined as in Table 1. The defined dairy and beef cattle breeds 
were used for gEBV comparisons described later on. 

Table 1. Sample size of defined dairy and beef cattle breeds

Dairy cattle Beef cattle
Holstein 567 Angus 266

Brown Swiss 148 Simmental 225
Jersey 66 Charolais 128

Montbeliarde 54 Limousin 82
Normandy 44 Hereford 75

Finnish Ayrshire 25 Guelph composite 30
Norwegian Red 24 Beef Booster 29

Guernsey 20 Blonde dAquitaine 26
Swedish Red 16 Belgian Blue 16

Angus Red 6
Maine Anjou 5

BraunviehBeef 4

A set of pleiotropic sequence variants (92.5K) associated with 34 dairy traits were identified 
using Australian dairy bull (N>11,000) and cow populations (N>33,000) and 17.7 million imputed 
sequence variants with accuracy R2 > 0.4. The detail of the data and the GWAS model used can be 
found in (Xiang et al. 2019). Briefly, the traits were decorrelated by Cholesky transformation (Xiang 
et al. 2017). GWAS fitting breed as the fixed effects were conducted for each one of the 34 traits 
separately in bulls and cows.  For the GWAS results of each trait from two sexes, a weighted t value 

was calculated to combine the variant effects with             (Xiang et al. 2018) where 
 
 
 ​​B​ bull​​​ and ​​se​ bull​​​ were the beta and standard error (se) of the bull GWAS and ​​B​ cow​​​ and ​​se​ cow​​​ were the 
beta and se of the cow GWAS. The weighted t value across traits and variants were analysed by the 
multi-trait meta-analysis method (Bolormaa et al. 2014). Variants with the meta-analysis P-value  
< 1e-6 and MAF > 0.001 were retained as significant pleiotropic variants. 

The genomic best linear unbiased prediction (gBLUP) implemented in MTG2 (Lee and Van 
der Werf 2016) was used to train prediction equations in the dairy dataset. A genomic relationship 
matrix (GRM) was calculated from the prioritized pleiotropic variants. Original traits (deregressed 
proofs) were used to perform gBLUP in Australian bulls and cows. The gBLUP model used was 
 ​y  =  mean + ​breed​ i​​ + a + error​, where y = vector of phenotypes for bulls or cows,  ​​breed​ i​​​ = three breeds 
for bulls, Holstein, Jersey and Australian Red and four breeds for cows (Holstein, Jersey, Australian 
Red and MIX), a = polygenic random effects ~N(0, Gσg2) where G = GRM. This estimated the total 
genetic value of Australian bulls and cows and was followed by the back-solving for the variant solu-
tion in the Australian data. Then, the variant solutions were combined with the sequence genotypes 
to calculate dairy-trait gEBV of the 1KBull cattle. 
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RESULTS AND DISCUSSION
A principle component analysis (PCA) was carried out on the sequence genotypes of the 1KBull 

database and dairy-trait gEBVs (Figure 1). Overall, the first PC separated Holstein from other breeds 
and the 2nd PC separated Angus from other breeds. This may reflect that these two breeds were the 
most common in the database. The 1st PC of gEBVs (X-axis of the right panel of Figure 1) associ-
ated with milk production traits separated some dairy cattle breeds but did not separate beef cattle 
breeds. This also suggested that the 37 gEBV of dairy traits can be used to distinguish the phenotypic 
difference between dairy and beef cattle.

Figure 1. Principal components analysis results of the genomic relationship matrix and the 
dairy trait gEBVs of the 1000-bull-genome cattle

Individual dairy-trait gEBVs were compared between dairy and beef cattle breeds and were also 
compared between Holstein and Jersey breeds in the 1KBull individuals (Figure 1 and Table 2).

Table 2. gEBV difference. ns: not significant 

gEBVs Trait full name Dairy VS Beef Holstein VS Jersey
Prot Protein yield + +
Fat Fat yield + +

Milk Milk yield + +
FatP Fat percentage - -
ProtP Protein percentage - -
SCC Somatic cell count + -
Temp Temperament - -

MSpeed Milking speed + +
Stat Stature + +
Like Likeability - -(ns)

Angul Angularity + +
MuzW Muzzle width - +(ns)
TeatL Teat length - +(ns)
UdTex Udder texture + +
UdDep Udder depth + +(ns)
RumpL Rump length + +
OType Overall type + +
Mamm Mammary systems + +
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Most dairy trait gEBVs were higher in the 1KBull dairy cattle than those in the 1KBull beef cattle. 
Thus, the within breed genomic predictions do predict qualitative differences between breeds. This 
result also supports the informativeness of the retained pleiotropic variants. The lower fat (FatP) and 
protein percentages (ProtP) in the diary breeds than in the beef breeds was due to that their higher 
milk yield. The somatic cell count (SCC) score and milk speed (MSpeed) was higher in the dairy 
cattle than in the beef cattle. The dairy cattle are predicted to have better overall type (OType) and 
mammary system (Mamm), to be more Angular and have shorter teat length (TeatL). These differences 
appeared to be consistent with the common expectations.

In the gEBV comparisons between Holstein Jersey breeds, Holstein cattle had higher milk pro-
ductivities, but lower somatic cell count score, fat and protein percentages than Jersey cattle. Holstein 
cattle had better assessment of the overall type and the mammary system. No significant differences 
were found for likability, muzzle width (MuzW), teat length and udder depth (UdDep) between the 
two breeds. These observations appeared to be consistent with the common knowledge about Holstein 
and Jersey cattle. 

CONCLUSIONS
Overall, our results show that it is possible to predict qualitative differences between breeds using 

genomic prediction based on a set of sequence variants chosen because they are associated with dairy 
traits. This study also provides alternative insights into efficient use of available data to conduct 
validation analysis. Our analysis included ~900 beef cattle from the Run6 of the 1KBull project. It is 
recommended to extend such genomic prediction analysis in a large beef cattle population where the 
allele frequency of the prioritised dairy pleiotropic variants can be properly examined and accounted for.
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