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SUMMARY
The accuracy of genomic prediction for a numerically small sheep breed was investigated based 

on a large multi-breed admixed reference set using moderate or high density SNP genotypes, imputed 
whole genome sequence genotypes or selected sequence variants based on a genome wide association 
study (GWAS). Reference set with weight and eating quality phenotypes was divided into a GWAS 
sub set (n=4,000), a training set (n=13,466 to 38,098) and a validation set with data of 143 to 169 
purebred Dorper sheep. Genomic BLUP was used to estimate genomic breeding values and prediction 
accuracy was evaluated in the validation set based on the correlation between GBV and corrected 
phenotypes. Results showed a prediction accuracy between 20% and 30% based on 50k genotypes 
across different trait, which increased on average by 2.5% to 7.0% by using HD genotypes or selected 
sequence variants derived from an independent GWAS.

INTRODUCTION
Genomic prediction has been successfully implemented in breeding programs of the main livestock 

species. In numerically small breeds, it is difficult to establish a reasonably large reference population 
and prediction based on other main breeds was shown to be of limited value, (Kachman et al. 2013; 
Moghaddar et al. 2014). Low GBV predictability from other breeds would be partly because of low 
linkage disequilibrium (LD) across breeds between genetic markers and the causative mutation, 
a different distribution of QTL effect and QTL frequency between breeds, or due to genotype by 
background genotypes interaction. The problem of low LD maybe overcome when using denser 
marker sets or whole genome sequence (WGS) variants in genomic prediction. This study evaluated 
the accuracy of genomic prediction for growth and eating quality traits in purebred Dorper sheep 
based on a large multi-breed admixed sheep reference population, and to compare predictions based 
on common 50k or HD SNP genotypes, imputed WGS genotypes or using selected sequence variants 
based on an association study.

MATERIALS AND METHODS
Phenotypes and Animals. Data on post weaning weight (PWT), carcass scanned fat (CCFAT)and 

eye muscle depth (CEMD), intramuscular fat (IMF) and shear force at 5 days aging (SF5) recorded 
in research and industry flocks between 1999 and 2017 were used in this study. Figure 1 shows the 
genetic diversity of the sheep breeds used in this study as a plot of the first versus the second principal 
component derived from a genomic relationship matrix (GRM). Phenotypes were corrected for fixed 
environmental effects separately for research and industry animals. The fixed effects of the model 
were flock, year, sex, management groups, birth and rearing type, age of dam, age at and weight 
at measurement (for scanned traits). Random maternal effects were fitted for post weaning weight. 
Corrected phenotypes from research and industry data were combined and then corrected for source 
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of data (research/industry) and random effect of breed proportion derived from a multi generation 
pedigree using ASReml 3.0 (Gilmour et al. 2009). Between 143 and 169 purebred Dorper sheep with 
phenotypes and genotypes were used as validation set to represent a numerically small breed. Two 
data subsets were formed for a genome wide association study (GWAS); n=4000, either randomly 
assigned or selected based on possible higher relationship to the validation set. The rest of population 
(between 17,466 and 42,098 across different traits) was used as genomic prediction training set. 

Genotypes. Animals were genotyped with the Illumina 50k-ovine (~70%) or 12k-ovine SNP 
panel (~30%), which yielded a final 44,101 and 11,377 SNP per animal respectively. Genotypes were 
imputed to HD genotypes based on 2,266 animals as reference set and then to WGS based on 726 
animals as reference set. The final set was comprised of 31,154,249 SNP and InDels. Selection of 
sequence variants was based on significant SNP (–Log Pvalue ≥ 3.5) in GWAS performed on sequence 
data and then pruned locally for high LD (≥0.95). Association analysis was based on regression of 
corrected phenotypes on single sequence variant in linear mixed model (LMM) using Gemma V0.96 
(Zhou and Stephens 2012). 

Genomic prediction. GBV were calculated based on GBLUP with MTG2 2.02 (Lee et al. 2016) 
using the following SNP arrays: 1) 50k (44,101) genotypes, 2) HD (452,998) genotypes, 3) WGS 
(30,724,780) and 4) 50k and selected sequence variants (2,583-2,865). The following model was 
used to estimate variance components and genomic breeding values in scenarios 1, 2 and 3: y=Xb 
+ Za + e, where y is a vector of corrected phenotypes, b is a vector of fixed effect (only mean), a 
is a vector of random additive genetic effects and e is a vector of random residual effects. X and Z 
are incidence matrices that relate fixed and additive genetic effects to phenotypes respectively. The 
additive genetic effects were assumed to be normally distributed with a covariance structure based on 
the GRM derived from the respective SNP panels. The genomic prediction model in scenario 4 was 
based on fitting two genetic component simultaneously, with covariance structure based on a GRM 
from 50k genotypes and selected variants, respectively. Accuracy of genomic prediction in purebred 
Dorper sheep was evaluated based on Pearson correlation coefficient between GBV and corrected 
phenotypes in the validation set divided by the square root of the trait’s heritability.

RESULTS AND DISCUSSION
Slightly higher heritability, but consistent across different traits, was observed based on imputed 

HD genotypes and imputed sequence data compared to 50k genotypes (Table 1). Higher heritability is 
related to stronger LD between markers and QTLs and better estimation of realized genetic relationship. 

The sum of the heritability based on fitting two random components simultaneously was on average 
similar to heritability estimates based on 50k or HD genotypes. Figures 2 and 3 compare the accuracy 
of genomic prediction for Dorper sheep according to using 50k or imputed HD genotypes, imputed 
WGS variants and 50k SNPs plus selected imputed WGS variants, respectively. Results show a higher 
accuracy of genomic evaluation by including the effect of selected sequence variants in the prediction 
model as an additional random effect. The extra accuracy was on average 0.065 and 0.077 higher 
when fitting selected sequence variants from a random or selected GWAS population, respectively. 
SF5 and IMF showed the highest increase in prediction accuracy; 0.11 and 0.09 when using selected 
variants derived from random or selected GWAS populations, respectively. Accuracy of genomic 
evaluation from using all called sequence variants (~31x106 variants) was not consistently higher than 
50k genotypes. SF5 showed an increase of 0.05 and the prediction accuracy was equal or even lower 
than 50k genotypes. Prediction from imputed HD genotypes was more accurate (2.4%) compared 
to prediction using 50k genotypes in most cases except for PWT and IMF. Results show a base of 
between 20% and 32% genomic prediction accuracy on growth and eating quality traits using 50k 
genotype data for Dorper sheep based on the use of a large multi-breed reference population (13,466 
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to 38,098). This base prediction accuracy was expected and would be related to the use of the large 
multi-breed reference set which includes breeds that are genetically close to Dorper sheep (Figure.1). 

Table 1. Heritability (h2) estimates based on 50k, HD, WGS and 50k and Selected Sequence 
variants for different traits

Trait No of Records h2,50k h2,HD h2,WGS h2(50k,Sel_SNPs)
Post Weaning Weight (PWT) 38,098 0.182 0.182 0.184 0.174, 0.04
Carcass Scanned Fat (CCFAT) 14,369 0.185 0.214 0.229 0.163,0.06
Carcass Eye Muscle Depth (EMD) 14,507 0.148 0.151 0.149 0.135,0.02
Intra Muscular Fat (IMF) 13,466 0.404 0.434 0.455 0.412,0.03
Shear Force day5 Aging (SF5) 14,394 0.172 0.178 0.196 0.146,0.03

Figure 1. Genetic diversity of the sheep breeds as a plot of the first vs second principal components

Improvement in prediction accuracy by using selected sequence variants in the current study is 
in similar range to previous study in main sheep breeds (Moghaddar et al. 2018) and is in line with 
the results of studies on multi-breed dairy cattle. In dairy cattle, Van den Berg et al. (2016) showed 
on average up to 7% higher genomic prediction reliabilities (R2) across milk yield, protein and fat 
from a multi-breed reference population. Brøndum et al. (2015) reported up to 5% improvement in 
genomic prediction reliability on a range of production traits in multi-breed dairy cattle based on 
including selected sequence data from GWAS in GBLUP. Using a complete set of imputed WGS a 
marginal, zero or even some drop in GBV accuracy observed. This is because WGS provide a very 
large amount of genetic markers of which a small subset would be at or in high LD with causative 
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mutations. Majority of these imputed sequence variants would not be able to capture genetic variance 
and their contribution would be limited to capturing the family relationships between animals, which 
would be similar or slightly higher to the relationship captured by 50k genotypes. Similar results of 
no improvement in prediction accuracy from using all the sequence variants data have been reported 
in Holstein-Friesian dairy cattle (VanRaden et al. 2015). 

The extra prediction accuracy based on selected variants derived from a GWAS subset that used 
data from animals closely related to the target breed appears to be slightly higher (2% on average) 
than using a random GWAS subset. The differences may be not statistically significant and requires 
more verification in further studies, particularly based on larger GWAS populations. However, higher 
accuracy would be related to probably larger proportion of SNPs derived from a more related GWAS 
subset in association with gene that segregate in target breed. This indicates that while multi-breed 
GWAS population is more powerful to find larger numbers of causal genomic regions (Duijvesteijn et 
al. 2018; van der Berg et al. 2016), our study showed more genetically related GWAS population to 
target population is preferable to obtain more accurate genomic breeding values. The GWAS results, 
which showed there are some significant genomic regions limited to a random or a selected GWAS 
subsets, support these results.

CONCLUSIONS
Genomic prediction accuracy for a numerically small breed population increased by 2.5% and 

7% based on using imputed high-density marker genotypes and imputed sequence variants derived 
in an independent population respectively. Selection of sequence variants from a genetically more 
related population was in favour of higher genomic prediction accuracy in small breed populations. 

REFERENCES
Brøndum R.F., Su G., Janss L. and Sahana G. (2015) J. Dairy Sci. 98: 4107.
Kachman S., Spangler M., Bennett G., Hanford K., Kuehn L., Snelling W., Thallman R., Saatchi M., 

Garrick D., Schnabel R., Taylor J. and Pollak E. (2013) Genet. Sel. Evol. 45: 30.
Gilmour A.R., Gogel B.J., Cullis B.R. and Thompson R (2009). VSN International Ltd; 2009.
Lee, S.H. and van der Werf, J.H.J (2016). Bioinformatics 32, 1420.
Moghaddar N., Swan A.A. and van der Werf J.H.J. (2014) Genet. Sel. Evol. 46: 58.
Van den Berg I., Boichard D. and Lund M.S. (2016) Genet. Sel. Evol. 48: 83.
VanRaden P.M., Tooker M.E., O’Conell J.R., Cole J.B. and Bickhart D.M. (2017) Genet. Sel. Evol. 

49:32.
Zhou X. and Stephens M. (2012) Nature Genetics. 44: 82.


