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SUMMARY
This paper describes characteristics of the new analysis for reproductive traits of ewes, as applied to 

data from maternal breeds. Components of reproduction are treated as different traits for yearling and 
adult ewes. The new procedures produce breeding values for conception, litter size, rearing ability of 
ewes, maternal behaviour and condition scores from a multi-breed, multi-trait analysis, using industry 
and information nucleus phenotypes, genotypes and single-step methodology. Breeding values will 
be released as research (interim) breeding values by Sheep Genetics while further refinements are 
made. Future implementation is targeted for Merinos.

INTRODUCTION
Prior to 2007, the phenotype for reproductive performance of a ewe analysed by Sheep Genetics 

was a single record reflecting the number of lambs weaned per lambing opportunity. This phenotype 
was inferred from lamb pedigree. Only ewes joined to produce pedigreed lambs over their lifetime 
obtained an accurate record. In addition, the trait definition was imprecise, as it did not allow for 
important systematic and temporal effects influencing annual outcomes, it did not capture lamb losses, 
and contemporary comparisons were also limiting. Since 2007, reproductive performance of ewes 
has been evaluated using annual phenotypes for the number of lambs born (NLB) or weaned (NLW) 
(Brown et al. 2007). These are also composite traits which combine the components of conception 
(CON) and litter size (LS), along with the ability of the ewe to successfully rear lamb(s) (ERA). That 
is, NLB is a function of CON+LS, while NLW is a function of CON+(LS×ERA). Despite better trait 
definition and models, data for NLB and NLW were frequently censored due to incorrect recording 
for one or more of the above component traits. Information regarding dry ewes, lambs born dead and 
an update to individual lamb rearing outcomes were required to correctly identify all components 
contributing to NLB and NLW.

To improve identification of dry ewes and litter size when lambs were not individually recorded, 
pregnancy scan data became a secondary data source in 2017. However, inaccurate identification of 
lambs born dead, lamb survival outcomes and incorrect contemporary grouping across multiple data 
sources (e.g. lambs vs scans) and component traits (e.g. joining vs lambing contemporary groups) 
remained problematical. In this paper, we describe new procedures for genetic evaluation of the 
component traits contributing to ewe reproductive performance. These procedures provide better use 
of data recorded by breeders subject to both data limitations and opportunities and provide breeding 
values for the above component (and other) traits in a multi-breed, multi-trait format, using phenotypes, 
genotypes and single step methodology.

MATERIALS AND METHODS
Inventory-based recording commenced in 2009, giving breeders an opportunity to provide additional 

detail on joining dates, service sire(s), pregnancy scan outcomes, and management groups (mgp) 
specified for joining and lambing separately. Component traits were defined annually for joined ewes 
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as CON: 0=failed to conceive, 1=conceived; while LS (1 to n lambs born) and ERA (lambs surviving/
lambs born) were defined for ewes which lambed. For ewes without lambs recorded, CON and LS 
could be assigned using pregnancy scan results (Bunter et al. 2016). After further consultation with 
breeders, values for CON were altered to 0 if conception occurred more than 60 days after joining 
commenced, to better reflect commercial targets.

For the reproductive traits, records with obvious data errors and in small contemporary groups 
were discarded. Additional data recorded for ewes included maternal behaviour score (MBS: from 
1: good to 5: poor), as described by Brown et al. (2016), and pre-joining weight (WT) and condition 
score (CS) recorded within the 30 days prior to joining. Data further describing body composition 
and development, thought to be relevant to reproductive outcomes, include scanned post-weaning 
carcase fat (PFAT) and eye muscle depth (PEMD), along with post-weaning (PSC) or yearling (YSC) 
scrotal circumferences. Data for these four traits were extracted from the Sheep Genetics database 
only for those flocks included in analyses of reproductive performance for maternal breeds. Data 
from the information nucleus research flocks (van der Werf et al. 2010) was also used to commence 
a genomic reference population for reproductive traits, augmented by more recent genotyping of 
industry animals with phenotypes.

Based on previous analyses (Bunter and Brown 2013), yearling and adult performances of CON, LS 
and ERA are treated as separate traits. The basic model for non-genetic effects influencing reproductive 
traits includes cgp + age, where cgp refers to joining (CON, LS) or lambing (ERA) contemporary 
groups (based on site-year-timegp-mgp details) and age represents the ewe’s age in years (adult ewes). 
Timegp is assigned based on dates to accommodate evidence of gaps between separate but unspecified 
joining events. Contemporary groups were further refined (Bunter et al. 2017) to include: 1) month 
of birth and dam status (yearling or adult) in the cgp for yearling traits, and 2) previous status (no 
lamb, lambed and lost or weaned, unknown) in the cgp for 2yo traits, enabling flock specific effects 
with respect to these factors. Litter size group (1, 2, 3 or more, unknown) at birth was fitted as an 
additional model term for ERA, since litter size alters the rearing challenge for ewes (Bunter et al. 
2017). Additional model terms included birth-rear type group for yearling but not adult reproductive 
traits. Regressions on age, but not weight, were applied to raw data for PFAT, PEMD, PSC and YSC 
where significant (p<0.05), modelled using contemporary groups previously defined for these traits 
(Brown et al. 2007).

Following a series of univariate and bivariate analyses to estimate genetic parameters for each 
trait and trait combination, covariance matrices were adjusted for consistency. After preliminary 
investigation, the genomic relationship matrix (G) was also partitioned into 15 breed sub-groups 
to improve consistency of genomic with pedigree-based relationships (described by the numerator 
relationship matrix, A), after correcting obvious anomalies (e.g. unidentified or incorrect pedigree 
parents) (Gurman et al. 2019). Single step procedures were implemented constructing the H-matrix 
according to Aguilar et al. (2010). The research breeding values (RBVs) were subsequently estimated 
using RACEMULE software (AGBU), which enables data to be analysed fitting desired model terms 
directly to the data, without pre-adjustment. The predictive capacity of the resulting RBVs was assessed 
by regressing adjusted phenotypes (post 2013) on sire breeding values estimated from data recorded 
before 2013. Estimates of variances due to genetic groups are described in Bunter et al. (2019). The 
reportable traits from these analyses are confined to RBVs for conception, litter size, rearing ability, 
maternal behaviour and condition scores, since ASBVs for all other traits are already reported for a 
larger sample of flocks through Sheep Genetics.

RESULTS AND DISCUSSION
The new procedures dramatically increase the number of animals with reproductive phenotypes, 
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most commonly litter size (N>700K), compared to a comparable export of data used for analyses 
of NLB and/or NLW (N<350K). The relative magnitude and direction of the estimated genetic and 
phenotypic correlations between traits for maternal breeds is shown in Figure 1. Traits correlated 
with ewe conception (PSC, YSC) and ERA (MBS) enhance the accuracy of prediction for these 
traits through low to moderate genetic correlations. Traits reflecting individual variation in post-
weaning body composition (PFAT and PEMD) were moderately correlated with pre-joining weight 
and condition score for ewes, and their inclusion improves accuracy of breeding values for YCS/CS. 
However, after accounting for the model terms noted earlier (e.g. age, dam age, birth-rear type status, 
and previous status), all body composition traits showed modest to negligible genetic correlations 
with reproductive traits in this data. Therefore, body composition traits are not strongly predictive of 
genetic merit for component traits in maternal breeds and recording reproductive outcomes directly 
is important for improving accuracy of evaluation for reproductive performance.

Figure 1. Depiction of genetic (circles) and phenotypic (squares) correlations between traits for 
MATL analyses. Size and colour of icons reflects the magnitude and direction of correlations 
(white=negligible correlation)

The distribution of RBVs for reportable traits from a recent analysis for 2017 drop animals is 
illustrated in Table 1. Even though reproductive traits tend to have low heritability, genetic variation 
is quite large and there were some useful differences amongst young selection candidates with respect 
to reproductive component traits. This demonstrates that opportunities exist to select amongst recent 
candidates for different components of reproduction. Regression coefficients for daughter performance 
on sire EBVs (Table 1) were generally positive, as expected, and approaching the expected value of 
0.5 when backed by significant data contributing to both the sire RBVs and post-2013 validation data 
(e.g. YLS). Regression coefficients for binary (YCON, CON) traits analysed with linear models are 
frequently under-predicted (Zhao et al. 2001).
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Table 1. The distribution of RBVs for animals born in 2017 for reportable traits (with units 
below) from the MATL analyses, along with the coefficient for the regression of daughter per-
formance (N) on sire RBVs

Trait RBVs at percentile thresholds
Percentile YCS CS YCON CON YLS LS YERA ERA MBS

Score score % % lambs lambs % % score
Top 0.85 0.69 30.8 10.1 0.39 0.40 11.8 8.91 -0.45
1% 0.33 0.16 14.3 3.9 0.16 0.18 4.87 3.30 -0.11
5% 0.26 0.11 11.0 3.1 0.13 0.14 3.83 2.58 -0.06
10% 0.20 0.09 8.3 2.5 0.10 0.12 2.95 2.08 -0.04
20% 0.14 0.07 6.0 2.0 0.08 0.09 2.09 1.67 0.00
40% 0.05 0.04 2.1 0.9 0.03 0.03 0.64 0.78 0.04
50% 0.02 0.02 0.5 0.3 0.01 0.00 -0.09 0.27 0.06
60% -0.03 0.00 -1.0 -0.4 0.00 -0.03 -1.08 -0.24 0.09
80% -0.12 -0.08 -4.6 -2.0 -0.04 -0.10 -2.90 -1.51 0.15
90% -0.21 -0.16 -10.4 -3.1 -0.07 -0.14 -3.98 -2.61 0.20
Bottom -0.51 -0.39 -17.8 -6.5 -0.16 -0.24 -7.36 -4.74 0.46
N 1586 7399 5776 3900 16678 51603 12524 29337 7533
Coefficient -0.01 0.38 0.07 0.38 0.54 0.37 0.26 0.29 0.16

CONCLUSIONS
The data pipeline and software have been developed to improve evaluation of genetic merit for 

reproductive outcomes of ewes, allowing a substantially larger proportion of the maternal sheep 
population to receive more accurate breeding values for reproductive performance. Moreover, the new 
breeding values for component traits will enable breeders to make more precise selection decisions (e.g. 
litter size versus lambs surviving). Where data were sufficient, regressions of offspring performance 
on sire EBVs for reproductive traits generally supported predictive capacity for reportable traits from 
the new analyses. Accurate recording of reproductive data will underpin the procedures for genetic 
evaluation of reproductive performance. Similar improvements will be implemented for other breeds 
(e.g. Merinos) in the near future.
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