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SUMMARY
Dairy cow temperament is a complex trait affecting both animal and human welfare. Using 

Bayesian methods, differential gene expression and sequence variant annotation, we increased the 
accuracy of genomic prediction for temperament compared to using only HD genotypes. Candidate 
genes for temperament overlapped with genes associated with human neuropsychiatric disorders. 
More generally, the results indicate that for complex traits, we could make further gains in the 
accuracy of genomic prediction from access to more specific knowledge of functional biology. This 
study demonstrates a practical approach to use imputed sequence genotypes and functional biology 
to improve the accuracy of genomic prediction.

INTRODUCTION
Since the time of cattle domestication some 10,000 years ago there has been continuous genetic 

selection for animals of docile temperament (excepting animals bred for combat). In dairy cattle, good 
temperament is critical for animal welfare as well as human safety because of the daily interaction 
between cattle and agricultural technicians carrying out tasks such as milking and semen collection. 
Dairy cattle temperament is a polygenic trait with low to moderate heritability (Visscher and Goddard 
1995). Given the intensive selection pressure for docility, we hypothesise that a significant proportion 
of the segregating variants that affect temperament will be relatively rare and recent. If this is the case, 
it is likely that for candidate gene discovery and genomic prediction there would be an advantage in 
using sequence variants rather than high density (HD) SNP chips. The reason for this is that SNP on 
commercial arrays are chosen to be common variants and are therefore not in strong LD with rare 
variants which are much more common in sequence data. 

This study had three aims: 1) to use sequence variants to improve the accuracy of genomic prediction 
for temperament, 2) to use differential gene expression and functional annotation as a biological prior 
to increase the accuracy of genomic prediction, 3) to discover candidate genes affecting dairy cattle 
temperament.

MATERIALS AND METHODS
Phenotypes & Genotypes. Australian dairy cow milking temperament is routinely scored by 

farmers on a scale of 1 to 5 (where 1 is good and 5 is bad) and phenotypes are processed by DataGene 
for use in national dairy cattle evaluation. For this study, DataGene provided temperament phenotypes 
pre-corrected for herd-year-season for Holstein (7,354), Jersey (3,224) and Australian Red (103) 
animals, including records on 7,343 cows, and 3,338 bulls with progeny test of ≥ 20 daughters. 
Phenotypes were expressed as trait deviations for cows and daughter trait deviations for bulls (mean=-
0.20, SD=0.61, min=-2.25, max=3.48) as used for the national dairy cattle evaluations. DataGene 
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also provided pedigree information. All animals had either real or imputed Illumina 800K BovineHD 
beadChip genotypes (HD). Subsequently, their genotypes were imputed to sequence variants in all 
gene coding regions (exons) as well as 5000 bp flanking all known genes. The combined HD and 
sequence data, “SEQ”, was then pruned for SNP pairs in perfect linkage disequilibrium (LD, r2 > 
0.99) and for variants with minor allele frequency (MAF) < 0.002 (details in MacLeod et al. 2016). 
After filtering, 994,019 variants remained and the animal genotypes were then centred and scaled to 
a unit variance. The Australian Reds (all bulls) were used only for validation of genomic predictions. 
The reference set included all Holstein and Jersey animals.

Statistical models. The data was analysed using the BayesR and BayesRC methods described by 
Erbe et al. (2012) and MacLeod et al. (2016) respectively. Briefly the model fitted was: 

Temperament = mean + breed-sex group + SNP effects + pedigree + error,
where pedigree was fitted to account for any polygenic genetic variance not explained by the combined 
SNP effects. To account for heterogeneous error variance associated with cow and bull phenotypes, 
the residuals were weighted following Garrick et al. (2009) and this was implemented in the Bayesian 
models as described in Kemper et al. (2015). Our Bayesian models fit SNP effects jointly as a mixture 
of four normal distributions with a mean of zero and variance: σ2
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g is the additive genetic variance. All analyses were replicated with 5 
MCMC chains, each with 40,000 iterations (20,000 burn-in). The accuracy of genomic prediction was 
estimated as the correlation between the genomic predictions and phenotypes, and bias was assessed 
as the regression coefficient of phenotypes on predictions.

The BayesRC approach is very similar to BayesR but incorporates prior biological knowledge in 
the model. For example, if one or more groups of variants are thought to be more enriched for QTL 
or causal variants, these can be allocated to a separate variant category a priori. In BayesRC, each 
category is then independently modelled as a mixture of the four BayesR distributions described 
above, but each starting with equal priors. If a category of variants is found to be enriched for causal 
variants in the data, this can improve the fit of the model. 

Therefore, a priori we used independent differential gene expression data measured in 18 bovine 
tissues (Chamberlain et al. 2016), to identify 500 genes that were most highly differentially over-
expressed in each of: caudal brain tissue, cerebral brain tissue and adrenal tissue. There was a strong 
overlap between the top 500 over-expressed genes in each of these three tissues, resulting in a unique 
set of 1006 genes that we refer to collectively as the “DE” gene set. To further inform the selection 
of variants for potentially enriched categories, we annotated all non-synonymous coding variants 
(NSC) associated with the DE genes as well as variants < 50 Kb up- and down-stream of DE genes 
(REG). We tested four BayesRC models, the first being “DE7” with 7 variant categories (of which 
6 used functional annotation): 

1)	 NSC in DE genes overlapping in both caudal and cerebral tissue (N=1617)
2)	 NSC in DE genes in either caudal or cerebral tissue (N=1447)
3)	 NSC in the remaining DE genes in adrenal tissue (N=1430)
4)	 REG flanking DE genes overlapping in both caudal and cerebral tissue (N= 30549)
5)	 REG flanking DE genes in either caudal or cerebral tissue (N= 28893)
6)	 REG flanking the remaining DE genes in adrenal tissue (N= 22151)
7)	 All remaining variants (N= 907932)

“DE2” was the second BayesRC model, where variants in categories 1 to 6 above were combined 
into one category, and remaining variants to a second category. The third and fourth models, “Random7” 
and “Random2”, had variant categories that matched DE7 and DE2, except that the DE gene set was 
replaced with a random set of 1006 genes chosen from 24,580 known bovine genes. The BayesR 
model was run with SEQ or HD genotypes.
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RESULTS AND DISCUSSION
The estimated heritability of temperament in the BayesR SEQ model was 0.1 which, although 

low, indicates that there is still important genetic variation for this trait. Previously, Visscher and 
Goddard (1995) estimated the heritability of Australian dairy cattle temperament to be 0,2 using only 
bull progeny test data and a sire model. More recent literature, in Holsteins, report similar heritability 
estimates to ours for farmer scored temperament (e.g. Stephansen et al. 2018). The accuracy of 
genomic prediction in the Australian Red validation set improved when sequence variants and HD 
SNP were combined (SEQ) in the BayesR model compared to HD only (Table 1). This may be a 
result of the sequence variants being in stronger linkage disequilibrium (LD) with causal variants 
and/or causal variants being included. If it is due to stronger LD, this could reflect the possibility that 
variants affecting temperament are rare because there has been strong selection pressure for docile 
temperament in dairy cattle since domestication. Previous studies in cattle for other traits have also 
shown small improvements from using selected subsets of sequence data compared to 50K or HD SNP 
genotypes (eg. Brøndum et al. 2015; MacLeod et al. 2016). However, use of full genome sequence 
has not yet shown consistent improvement compared to SNP chip genotypes (eg. Calus et al. 2016; 
van den Berg et al. 2017). We had therefore pre-selected a subset of sequence variants from gene 
coding regions and regions adjacent to genes, hoping to capture important missense or regulatory 
mutations for candidate genes. 

In our study, the BayesRC DE7 and DE2 models showed a further small increase in the accuracy 
of prediction (Table 1). These two models used the same variants as BayesR SEQ, but used prior 
biology to identify categories of variants that were in or close to genes highly over-expressed in brain 
or adrenal tissue compared to 17 other tissues (DE genes). Additionally, the DE7 model incorporated 
a biological prior on variant annotation: non-synonymous coding variants and those that might be 
regulatory. In the BayesRC Random2 and Random7 models, we replaced the DE gene set with a 
random set of genes and used this as the prior to group variants into 2 or 7 categories. The accuracy 
of prediction in the Random2 and Random7 models was lower than the DE2 and DE7 models 
(Table 1). This lends support to our assumption that genes which are highly expressed in brain and/
or adrenal tissue are more enriched for variants controlling dairy cow temperament. However, the 
level of enrichment for the different variant categories was not very high compared to the random 
models, suggesting that more specific prior biology is required to better inform the BayesRC model. 
The accuracy for the Random7 model was slightly lower than the HD. Although this is likely not 
significant, it could reflect the inclusion of some poorly imputed sequence variants that add noise 
to the prediction. This could be further tested by constructing random models multiple times. The 
bias of the predictions suggests a tendency to under-predict genomic breeding value but it is similar 
across the models.

Our Bayesian methods have previously been demonstrated to be a useful approach for fine mapping 
genes and mutations that affect complex traits (eg. MacLeod et al. 2016). Following our previous 
study, we used the Bayesian “posterior probability of a variant having a non-zero effect” to detect 
QTL regions and identify candidate genes. In the BayesR SEQ model, if there is very strong LD 
across a QTL region, the model will have difficulty distinguishing which variant to prioritise, so the 
posterior probability will be relatively low and spread across all variants in strong LD. Therefore, to 
locate candidate gene regions, we summed the posterior probability in windows of 20 SNP, sliding 
10 SNP to the next window. We identified 11 known genes in or closest to the top 13 QTL regions 
genome-wide: NCOA7, GAD2, PDGFD, TMPRSS5, DRD2, IQSEC1, MAOB, PTPRF, SLC25A16, 
TMCO5A, SNRPB2. The first seven were highly differentially expressed in bovine brain and/or adrenal 
tissue (Chamberlain et al. 2016) in line with our assumption that the DE genes were more likely to be 
associated with cow temperament than other genes. Furthermore, 10 genes of these 11 overlap candidate 
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genes or gene families associated with a range of human neuropsychiatric or neurodevelopmental 
disorders including: schizophrenia, autism, intellectual disability, post-traumatic stress and anxiety 
(eg. http://atgu.mgh.harvard.edu/~spurcell/genebook/genebook.cgi?user=guest&cmd=overview).

Table 1. Accuracy and bias of genomic prediction in 103 Australian Red bulls using a range of 
BayesR and BayesRC analytical models

Model1 Accuracy Bias Increase in accuracy vs. HD
BayesR HD 0.236 1.4 -
BayesR SEQ 0.269 1.6 3.4%
BayesRC DE7 0.289 1.6 5.3%
BayesRC DE2 0.282 1.7 4.6%
BayesRC Random7 0.221 1.3 -1.4%
BayesRC Random2 0.254 1.5 1.8%

1 See Materials & Methods for acronyms 

CONCLUSIONS
This study demonstrates a practical approach to exploiting sequence data and functional biology 

to improve the accuracy of genomic prediction and for causal gene discovery. It is likely that more 
specific functional biology would be beneficial for this approach.
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