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SUMMARY 

Genomic selection uses genomic information to predict the breeding value of animals and can 
achieve higher prediction accuracy than pedigree based selection. This study aimed to compare the 
accuracy of genomic prediction using a medium-density (50k) SNP panel, as well as an imputed 
high-density (600k) SNP panel, with and without including pre-selected SNPs from QTL regions 
identified by regional heritability mapping (RHM). The proportion of variance explained by the pre-
selected SNPs combined in a genomic relationship matrix (GRM) was considerably smaller than 
that explained by all SNPs from the 600k panel (25% of the genomic heritability).  To obtain a better 
estimate of the variance explained by the pre-selected SNPs, both GRMs from the pre-selected SNPs 
( 𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠) and their complementary SNPs from the 600k panel ( 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐) were fitted in a single model. 
The total heritability explained by both 𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠 and 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐 when fitted together was similar to the 
heritability explained by fitting all SNPs in a single GRM. The  𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠 explained a smaller proportion 
(18%) of the total heritability, whereas the  𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐 explained 82%. Fitting either the 50k or the 600k 
SNP panels resulted in similar prediction accuracy for parasite resistance (~0.37). However, when 
both  𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠 and 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐 were fitted together in the prediction model, genomic accuracy was increased 
by 10%. These results indicate that accuracy of genomic prediction can be improved by including 
QTL information explicitly in the prediction models.  
 
INTRODUCTION 

Traditional genetic improvement relies on the use of pedigree information and phenotypic 
records of farm animals to estimate their breeding values. This has led to substantial genetic gain in 
most livestock species, especially for the traits that are easy to measure. However, the process is 
often inefficient for low-heritable, expensive or difficult to measure traits. An example is parasite 
resistance, measured by indicator traits such as worm egg counts (WEC), which is an important 
health issue that affects the sheep industry worldwide. Genomic selection offers an alternative to 
conventional breeding programs and can increase the rate of genetic gain by using genomic 
information to predict the breeding values of selection animals (Hayes et al., 2009).  

In genomic selection, the genomic breeding values (GBV) for selection candidates are predicted 
based on the estimates of marker effects across the whole genome. The accuracy of predicting 
genomic breeding values depends on the heritability of the trait, the size of the reference population 
and the level of relatedness between the reference population and selection candidates (Habier et al., 
2010). Moreover, the accuracy is highly influenced by the level of linkage disequilibrium between 
the SNP markers and the QTL (quantitative trait loci) affecting the trait (Goddard 2009). Depending 
on the genetic architecture of the trait, the chosen statistical method used to build the prediction 
model will have a significant impact on prediction accuracy. Models that incorporate pre-selected 
SNPs from QTL regions have been shown to improve the accuracy of genomic prediction (Brondum 
et al. 2015). 

The objective of this study was to compare the accuracy of genomic prediction based on a 
medium-density (50k) SNP panel, high-density (600k) SNP panel, and including pre-selected SNPs 
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from QTL regions identified by regional heritability mapping for parasite resistance in Australian 
sheep.  

 
MATERIALS AND METHODS 

Animals. Parasite resistance, as measured by WEC, was investigated in a multi-breed sheep 
population from the Sheep Cooperative Research Centre information nucleus flock (INF). A total of 
7,539 animals with both genotype data and WEC phenotypes were included in this analysis. Various 
breeds were represented in the population (Table 1) but with a significant proportion of Merino 
sheep, and only this breed had a substantial proportion of purebred animals. The remaining breeds 
were mainly represented by their crosses with Merino (van der Werf et al. 2010).  
 
Table 1. Proportions of different breeds in the population 

 
Breed BL COR COOP EF WD PD TEX AF PS MER 
Proportion (%) 11.1 0.8 10 0.7 0.4 1.8 2.3 2 1.1 69.8 

Border Leicester: BL, Corriedale: COR, Coopworth: COOP, East Friesian: EF, White 
Dorper:WD,  Poll Dorset: PD, Texel: TEX, Australian Finnsheep: AF, Prime Samm: PS, 
Merino:MER 

 
  Genotypes. Animals were genotyped using the 50k Ovine marker panel (Illumina Inc., 

SanDiego, CA, USA). SNPs were removed if they had a minor allele frequency (MAF) < 1%, an 
Illumina Gentrain score (GC) less than 0.6, a call rate less than 95%, or not in Hardy-Weinberg 
equilibrium. Furthermore, positions of SNPs were obtained from the latest sheep genome 
Ovis_aries_v3.1, and any SNP with unknown position was removed. After applying these quality 
measures, 7,539 animals and 48,198 SNPs were retained. The imputation from the medium-density 
panel to the high-density (HD) SNP panel was performed using the Fimpute algorithm (Sargolzaei 
et al. 2014). 

Cross-validation experimental design.  Animals were randomly split into ten non-overlapping 
subsets (i.e. each subset with ~ 753 animals). For each experiment, one of the ten subsets served as 
a validation population and the remaining of the data served as the training population. The whole 
process was repeated ten times so that each subset served once as the validation population.  

Regional heritability mapping (RHM).  RHM was performed ten times, once for each 
validation set. The input to RHM consists of phenotype and genotype data (600k SNPs) on animals 
in the combined nine training sets. Data on animals in the validation set was not included in the 
RHM input. In RHM, each chromosome was divided into regions of pre-defined number of SNPs, 
and the variance attributable to each region was estimated. Window size of 200 SNPs was used to 
build genomic relationship matrix (GRM) and the window was shifted every 100 SNPs so that each 
two adjacent windows overlap midway. The significance was evaluated by the likelihood ratio test 
(LRT), comparing the RHM model which includes the regional effect with the base model composed 
of mean, fixed effects and random animal and error terms, but without the regional effect. The base 
model (1) and the RHM model (2) fitted to the data were as follows: 

 
𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆     (1) 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒁𝒁𝟐𝟐𝒈𝒈+ 𝒆𝒆     (2) 
 

where y is a vector of cube root transformed WEC records; b is a vector of fixed effects; 𝒁𝒁 is a vector 
of random additive genetic effects, 𝒈𝒈  is a vector of random regional genetic effect estimated from 
SNPs within each region (window), 𝒆𝒆 is a vector of residuals which was assumed to be distributed 
as ~𝑁𝑁(0, 𝐼𝐼𝐼𝐼𝑒𝑒2), where 𝝈𝝈𝒆𝒆𝟐𝟐 is the residual variance.  X, Z and 𝑍𝑍2 are incidence matrices relating fixed, 
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additive genetic and regional genetic effects to phenotypes. 𝒁𝒁 was assumed to be distributed as 
~  𝑁𝑁(0,𝐴𝐴𝐼𝐼𝑎𝑎2) ,  where 𝑨𝑨 is the numerator relationship matrix (NRM) calculated from deep pedigree 
records and 𝝈𝝈𝒁𝒁𝟐𝟐 is the additive genetic variance explained by pedigree; and  𝒈𝒈 was assumed to be 
distributed as 𝑁𝑁(0,𝐺𝐺𝐼𝐼𝑔𝑔2), where  𝐺𝐺 is the regional genomic relationship matrix constructed from 
SNPs within each region, and 𝐼𝐼𝑔𝑔2 is the regional genomic variance. The fixed effects included in the 
models were breed proportions, age of animals, age of dam, gender, rearing type × birth type and 
contemporary groups (combination of flock site, birth year and management group effects).  

Selection of SNP markers. Genomic regions obtained from each of the ten-fold cross-validation 
RHM analyses were ranked based on their LRT and significant regions were selected. For each fold, 
the top five ranked regions across the ten-fold experiments were the same. SNPs located within the 
top five ranked regions were used to build a GRM ( 𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠) and the proportion of the variance 
explained by these pre-selected SNPs was estimated by replacing the NRM in model (1) by the GRM 
obtained from the pre-selected SNPs. Variance was not only estimated using the GRM for the 
selected SNPs, but also by using a complementary GRM ( 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐) based on the remaining SNPs 
from the 600k SNP panel. To obtain a better estimate of the variance explained by the selected SNPs, 
both the   𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠 and  𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶 were fitted together in the same model. 

Accuracy of genomic prediction. To evaluate the impact of the selected SNPs on prediction 
accuracy, genomic predictions for the validation animals was calculated and correlated with the 
phenotypes of the same animals. The  𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠was fitted and the genomic best linear unbiased 
prediction (GBLUP) analysis was performed. The prediction model that includes both  𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠 and 
 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐 was also evaluated. Genomic breeding values (GBV) were calculated following the ten-fold 
cross-validation procedure as described above. Prediction accuracy was calculated as the correlation 
between the predicted GBVs of the validation set and the adjusted phenotypes, which were corrected 
for fixed effects, divided by the square root of the trait heritability. Furthermore, the regression 
coefficient (slope) of the adjusted phenotypes on the GBVs was calculated to assess the bias of 
genomic predictions. 

 
RESULTS AND DISCUSION 

The RHM results for ten-fold experiments are shown in the Manhattan plots in Figure1. The top 
five ranked regions remained consistent across the ten-fold cross-validation experiments. These five 
regions include three windows (107 -108 Mb, 110 -112 Mb, 117 -118 Mb) on OAR2, three 
overlapping windows between 28 to 36 Mb on OAR6, a window between 17 to 18 Mb on OAR18, 
a window between 7.2 to 6.8 Mb on OAR20 and a window between 40 to 41 Mb on OAR24. 1600 
SNPs located within these regions were selected to build a GRM and, the heritability explained by 
the pre-selected SNPs was 0.05 compared to 0.19 explained by all the SNPs from the 600k panel. 
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Figure 1. Manhattan plots of regional heritability mapping (RHM) results across the ten-fold cross-

validation experiments. The x-axis represents the number of windows and the y-axis represents the 
corresponding likelihood ratio test (LRT) for each window 

 
Another way of testing the importance of the pre-selected SNPs was to investigate how much 

heritability was lost when the pre-selected SNPs were excluded from the GRM. Fitting only 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶, 
containing all SNPs in the 600k panel minus the pre-selected SNPs from the target regions, resulted 
in a similar heritability estimate as fitting all the SNPs. To assess the relative importance of the GRM 
from the selected SNPs and the GRM from the remaining SNPs, both  𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠 and  𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶 were fitted 
simultaneously in the same model. The proportion of variance explained when both  𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠  and 
 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶 were fitted simultaneously was similar to the proportion of the genetic variance explained 
by fitting all the SNPs from the 600k. The GRM from the selected SNPs explained 18% of the total 
heritability, whereas 82% of the total heritability was explained by all the remaining SNPs (Table 
2).  
Table 2. The proportion of phenotypic variance (h2) explained for parasite resistance 

 
Selection criteria GRM  𝑮𝑮𝑮𝑮𝑮𝑮𝒔𝒔  𝑮𝑮𝑮𝑮𝑮𝑮𝑪𝑪 logL 

G (50k) 0.178 ± 0.020   -10673 
G(600k) 0.194 ± 0.021   -10670 

G(regions)  0.050 ± 0.009  -10682 
GRMc   0.188 ± 0.021 -10673 

G(Regions)+GRMc  0.034 ± 0.008 0.152 ± 0.021 -10638 
G (50k): GRM from the 50k SNP panel, G (600k): GRM from the 600k SNP panel, G (regions): 
 𝐆𝐆𝐆𝐆𝐆𝐆𝐬𝐬  from the pre-selected SNPs; GRMc: complementary GRM (GRMc)  
 

Using any of the 50k and the 600k SNP panels resulted in a similar prediction accuracy for 
parasite resistance (~0.37, Table 3). When the  𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠 from the pre-selected SNPs was fitted alone, 
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the prediction accuracy dropped by 18% compared to fitting all SNPs from the 600k panel. However, 
when both  𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠 and  𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶 were fitted together, higher prediction accuracy was observed than 
fitting all the SNPs in a single GRM. This is likely because a model with two components of genetic 
effects allows effects of the pre-selected SNPs to have larger variance than all the remaining SNPs 
in the panel, thus putting more weight on the pre-selected SNPs from the QTL regions. Moreover, 
the slopes of all models were not significantly different from 1, which indicates no significant bias 
in the predictions. It should however be noted that the RHM regions are not independent since they 
were the same across all 10-fold repeats and this can of course favourably influence the prediction 
accuracy. While suboptimal for a fair comparison of accuracy of prediction this lack of 
independence is not unexpected nor undesirable in practice since QTLs should have a real biological 
effect on a trait and are expected to be consistently identifiable in different datasets with similar 
power. If the RHM regions changed with each subset of the data, there would be greater cause for 
concern. 
 
Table 3. Cross-validation prediction accuracy for parasite resistance averaged over the ten 
validation sets, and slope for the regression of adjusted phenotypes on the predicted breeding 
values 
 

Selection criteria Accuracy SE(accuracy) Slope SE(slope) 
G (50k) 0.368 0.036 0.915 0.197 
G(600k) 0.374 0.036 0.916 0.193 

G(regions) 0.307 0.035 0.841 0.219 
G(Regions)+GRMc 0.411 0.036 0.848 0.164 

 
CONCLUSION 

The results in this study show that there is little advantage of using the imputed high density SNP 
panel over the medium-density panel for genomic prediction with this trait. However, by 
incorporating information from QTL regions explicitly into the genomic prediction model, 
prediction accuracy of parasite resistance increased by 10% based on the current SNP panel density. 
These results suggest that QTL information should be beneficial in genomic prediction, not just for 
parasite resistance but also for other economically important traits in sheep.  
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