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SUMMARY

Computational requirements for single step genomic evaluation fitting a hybrid between
breeding value and marker effects models are examined for a simulated example. It is demonstrated
that such a model can accommodate large numbers of genotyped animals — readily allowing
exploitation of large in-core memory and parallel processing capabilities available with modern
hardware — and that a principal component parameterization for multivariate analyses of numerous
traits is advantageous.

INTRODUCTION

Genomic evaluation jointly considering genotyped and non-genotyped animals in a so-called
single-step (SS) analysis has become routine procedure for many genetic evaluation schemes. Most
implementations invoke a formulation which ‘simply’ replaces the pedigree based relationship matrix
in the standard ‘breeding value’ (BV) model with its counterpart incorporating genomic information;
see Legarra et al. (2014) for a review. Recently, Fernando et al. (2014, 2016) proposed an alternative
which does not require construction or inversion of a genomic relationship matrix: the ‘hybrid model’
(HM) combines a BV model for non-genotyped animals with a ‘marker effects’ model for genotyped
individuals to represent additive genetic effects. Describing strategies for efficient computations, the
authors emphasized the scope of the HM to exploit the parallel processing capacities of modern hard-
ware. This paper presents a first look at computational demands of multivariate genomic evaluation
under the HM, including an evaluation of a parameterisation to principal components.

THE HYBRID MODEL

Consider records for ¢ traits and let subscripts ‘1’ and ‘2’ denote terms pertaining to »; non-
genotyped and n, genotyped individuals, respectively. Let I, denote an identity matrix of size q.
Ordering genetic effects by individuals or markers within traits, the multivariate HM model is
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with y;, b, u;, & and e; the vectors of records, fixed effects, breeding values, marker effects and
residuals, X; and Z; the corresponding incidence matrices, and M; the matrices of marker counts,
appropriately centered and scaled. Marker counts for non-genotyped individuals need to be imputed.
This can be done by regression using pedigree information, M; = A ;A5 M,, with A;j the ij—th
submatrix of the numerator relationship matrix and € accounting for imputation errors (Fernando
et al. 2014). As formulated, the HM implies that breeding values for genotyped individuals are
explained entirely by the markers fitted, but (1) is readily expanded to include additional polygenic
effects if this does not hold or any other, additional random effects. Assuming Var(u;) =35 ® A,
Var(e) ~ ¢ ®(A'H! and Var(ar) = £, ® D, mixed model equations (MME) pertaining to (1) are
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PC formulation. A parameterisation to principal components (PC) is obtained by replacing Z; with
7} =7;(Q&l), u; withuf = (Q'®Du, and @ with @* = (Q~'®I)ax. A suitable choice is Q = EA"?T,
the ‘factor matrix” obtained from the eigen-decomposition of X = EAE’ with orthogonal rotation T
Lo lower triangular form (Meyer er al. 2015). Truncating Q (o r < ¢ columns, this replaces Ea] in (2)
with I, and 2;] with Q'ZI;1 Q. where I, denotes an identity matrix of size r.

Computational strategies. Consider the iterative solution of (2) using a preconditioned conjugate
gradient (PCG) algorithm. This requires the product of the coefficient matrix in the MME, C, with a
vector, T, in each iterate, Cr = . Generally, C is too large to be stored in core. Partition C, r and q
according to the three types of effects fitted, dropping the subscript ‘1’ from u, in the following

L I R ,
g et od I o e *

Submatrices of C corresponding to b and u are the same as in the BV model, i.e. the respective parts
of Cr can be evaluated using sparse matrix multiplication or, for large problems, standard ‘iteration
on data’ techniques. Fernando ef al. (2016) considered a scenario where the number of markers
(m) is relatively small — in the tens rather than hundreds of thousands — so that both C,, and M-
of size n; X m could be stored in core. For more than a few traits, however, the former can be too
large and even evaluating its distinct ¢(¢ + 1)/2 submatrices (for pairs of traits) once and loading
them [rom out-of-core storage in each PCG iterate may be impracticable. Yet, M’IA' "M, of size
m x m may be held in core. Fernando et al. (2016) described how to impute columns of M, for
individual markers and how to obtain this product efliciently without the need to store M. The
authors further emphasized evaluation of partial products, required in solving the MME, in steps. For
instance, Cy,r,, = ( E(‘-l ®A12le)r,, can be scparated into dense matrix X sub-vector products for trait
i, Mar,; = t;, followed by sparse products A'*t;, and finally pre-multiplication of the resulting vector
for all traits with 3¢’ @ I, This eliminates the need to store the large, dense matrix M;A>" of size
m X ;. Moreover, evaluating a product of form SWt (for variable t) in steps as S(Wt) can be more
efficient than (SW)t (Strandén and Lidauer 1999). Similar decompositions can be employed for the
remaining products, exploiting that (I, ® M>)r, occurs multiple times and that multiplication with
I, ® M) can be applied to the sum of partial vectors, i.e both computationally intensive products are
only nceded onee per PCG iterate. Detailed steps are summarised in Figure 1.

APPLICATION

To evaluate performance of the HM, data for ¢ = 16 traits recorded on 1.5 million animals in 3
generations with m = 20000 markers were simulated using AlphaSim (Faux et al. 2016). Genetic
and environmental correlations among traits were assumed to be 0.6 and 0.3 throughout, while
heritabilities for odd and even numbered traits were set (0 0.5 and 0.2, respectively. Analyses [itted
37,500 randomly assigned fixed contemporary groups and restricted the marker information utilised
to randomly sclected animals in generation 3, ranging from r; = 0 to 500000.

Marker counts were centered using frequencies estimated from the data. My was imputed by
solving AllM, = —ADMz (Fernando et al. 2016) using sparsc matrix factorisation of Al after
reordering to minimise fill-in and triangular solves for blocks of s =40, 100 or 200 markers at a time.
Iterative solutions ot the MME were obtained using a PCG algorithm with diagonal preconditioner
and convergence criterion of 1077, setting genetic and residual covariances to values reported by
the simulation program, assuming 3, = ,—:,Ec and D = I,,. Analyses used the standard multivariate
parameterisation shown above (MV16) or parameterised (o » principal component (PCr) for r = 16,
14 and 12. Computations were carried out under Linux on a shared machine with 512GB of RAM and
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Figure 1. Steps to compute of Cr = q without storing sub-matrices C,,, C,. or C,, in core.

28 Intel Xeon CPU E5-2697 cores, rated at 2.6Ghz, with a cache size of 35MB. Calculations were
performed exploiting BLAS and sparse BLAS routines and the parallel direct sparse solver PARDISO
to impute M, all loaded from the multi-threaded Intel Math Kernel Library 11.3.2. In addition,
OpenMP directives were employed to parallelise selected operations, using up to 28 threads. Sparse
matrices Cpp, Cpur Cups Z1RT'Zy, X5R5'Zy, Z5R;'Z,, A, A'? and A?' were held in core, using
compressed matrix storage. Whilst Cp, = C/, and A'> = A*' s holding the additional transposed copies
allowed better use of BLAS routines for parallel computations at little increase in RAM required.

RESULTS

Computational requirements to determine M’IA“Ml and to solve the MME for increasing
numbers of genotyped animals are summarised in Table 1, together with selected characteristics of
the MME. All times shown are elapsed (wall) times for the specific task, excluding set-up steps.

Most memory (RAM) used was for in-core storage of M, of size n, X m, while holding M',A1 M,
for m = 20000 in core required just under 3GB (full-stored). Imputation of M; together with
calculation of MjA'"M; required less than half an hour, with some advantage for larger numbers
of markers processed at once and some increase in time required with growing n,. In comparison,
building and inverting the genomic relationship matrix for the same markers required 6, 43, 149 and
381 minutes for ny = 50,100,150 and 200K, respectively.

Not surprisingly, including genomic information in genetic evaluation increases computational
demands to solve the MME by orders of magnitude, the more so the greater the proportion of
genotyped individuals. Not only are there substantially more operations per iterate, but for the HM
with many non-zero off-diagonal elements in C,, solutions converged slowly resulting in many more
PCQG iterates to be performed. Employing a simple, diagonal preconditioner in the PCG algorithm,
parameterising to genetic principal components reduces the number of iterates and thus time required
substantially. This is due to ‘de-correlating’ genetic effects for different traits and thus can be less
effective when genetic correlations between traits are weak or when more sophisticated conditioning
schemes are applied (Meyer 2016). If the number of PCs fitted can be reduced, both RAM and
computing time required are decreased further, mainly due to a reduction in the number of equations
and therefore the number of operations per iterate. In comparison, a corresponding SS analysis fitting
a BV model for n, = 50K and MV 16 required only 290 iterates and 10 minutes for the solution phase.

DISCUSSION

In practice, genetic evaluation models are more complex than considered here and additional
random effects — especially genetic groups — are likely to increase the resources required for HM
analyses markedly. Nevertheless, results illustrate that multivariate evaluation under the HM is
feasible for numerous traits and many thousands of genotyped animals, especially if aided by a
parameterisation to genetic principal components. Computational demands are proportional to the
number of markers considered, i.e. may necessitate research efforts to identify appropriate subsets.
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Table 1. Computational requirements for genomic evaluation via the hybrid model

No. of genotyped animals, 7, (K)

0 25 50 75 100 150 200 300 500
Genotyped animals (%) 0 1.7 3.3 5.0 6.7 10.0 13.3 20.0 333
No. of equations (M) 24.6 24.5 24.1 23.7 23.3 225 21.7 20.1 16.9
RAM to store M, (GB) - 3.7 7.4 11.2 14.9 224 29.8 447 74.5
Imputation of M, and calculation of M;A''M,
RAM (GB) 407 - 26 30 33 37 45 52 67 96
100 - 29 33 36 40 47 54 69 98
200 - 33 37 40 44 51 58 73 102
Time (min) 40 - 23 24 24 24 25 26 27 29
100 - 17 17 17 19 20 21 21 21
200 - 15 15 15 16 16 16 19 19
Solution of mixed model equations
RAM (GB) MVi6 35 42 45 48 52 59 66 81 108
PC16 27 34 37 41 45 52 59 74 102
PC14 25 32 36 39 43 50 58 73 101
PCI12 23 30 34 38 41 49 56 71 99

No. of iterates ~ MV16 350 1249 1395 1449 1457 1534 1707 1997 2302
PCl16 167 597 623 638 629 654 668 668 678
PC14 165 584 624 612 624 653 654 659 680

PC12 163 572 618 624 635 646 654 653 671
Time (min) MV16 4 23 33 42 51 66 84 129 237
PCl16 2 15 18 22 29 34 44 68 100
PCl14 2 10 14 18 21 28 35 47 81
PC12 1 9 13 16 19 24 30 41 68

“Block size for imputation of markers

For beef cattle, Saatchi and Garrick (2016) proposed a reduced panel comprising about 2,300 markers
and reported predictive performance of more than 80% of that for a full 50K panel. For our example,
analyses fitting a BV model converged more quickly, presumably in part due to inclusion of non-
important markers in the HM analysis. The HM can be implemented exploiting efficient, off-the shelf
linear algebra routines. It appears best suited to analyses with large numbers of genotyped animals
where a sparse approximation of the inverse of the genomic relationship matrix is not desirable.
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