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SUMMARY 

The power of true positive associations in GWAS for traits affected by many QTL is generally 
low. This and other unfavorable scenarios pose a problem for the detection of true QTLs, which may 
lead to false positive associations. The aim of this study was to evaluate if combining the results of 
different statistical methods may increase the power to detect QTL. We simulated a polygenic trait, 
with known QTL positions. GWAS was performed using the WssGBLUP and BayesC methods, in 
a total of 8 different analyses, varying the assumptions of the SNP effects and the phenotypic data 
used. The results showed that as the number of analyses that a window was detected as important 
increased, so did the probability of that window containing a true QTL. Windows identified in 7 or 
8 analyses were able to detect just some (60.5%) of the true QTL. Windows detected in at least 5 
analyses captured 96% of the true QTL, but included some false positives (10.8%). Further studies 
are recommended, simulating traits with different genetic architectures, under different population 
structures, to evaluate the reproducibility of the present results. 
 
INTRODUCTION 

QTL detection remains a challenge in animal breeding, especially for lowly heritable complex 
polygenic traits. Under this scenario, Genome Wide Association Studies (GWAS) may present low 
power or high number of false positives, depending on the significance threshold adopted. Many 
statistical methods to perform GWAS are available (Meuwissen et al. 2001; Habier et al. 2011; 
Wang et al. 2012, and others), however their efficiency will depend on several factors such as the 
genetic architecture of the trait and the modeling assumptions related to the markers effects. 
Furthermore, other factors such as the linkage disequilibrium and the amount of phenotypic and 
genotypic information available may also affect the ability of QTL detection (Melo et al. 2016).  

When a genome region is detected as important by many statistical methods, the evidence that 
this region harbours a true QTL is supposedly increased (Legarra et al. 2015). The aim of this study 
was to evaluate if the number of statistical methods for which a region is considered to be significant 
is associated with the power of QTL detection, for a simulated lowly heritable complex trait. 
 
MATERIAL AND METHODS 
Simulation. QMSim software (Sargolzae & Schenkel 2013) was used to simulate a trait with 
heritability and phenotypic variance equal to 0.14 and 1, respectively. A historical population, with 
constant size of 1,000 animals (500 males: 500 females), was simulated for 1,000 generations. The 
population size was then decreased until it reached 200 animals (100 females), over another 2,020 
historical generations, producing a bottleneck effect and, as a consequence, genetic drift and linkage 
disequilibrium. The 200 animals from the last generation of the historical population were selected 
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as the founders of an expansion population, simulated over 6 generations. In this expansion process, 
the number of females grew exponentially and each dam had five offspring in each generation, 
totaling 16,000 animals (8,000 females) at the end of the expansion process. A total of 240 males 
and 6,000 females from the last expansion population were randomly selected to be the founders of 
the selection population. The selection was performed over another 15 generations, using a 
replacement rate of 20% for males and females, based on estimated breeding values. Phenotypic 
information of the females (≈45,000) from all generations of the selection population and 2,000 
randomly selected genotypes from females of the last three generations were used to perform the 
GWAS. This small proportion of genotyped animals was chosen to mimic a common situation. The 
simulated genome had a length of 2,333 cM, 735,293 markers and 7,000 QTLs. The average number 
of markers and QTLs per chromosome was 16,782 and 158, respectively, randomly distributed over 
29 autosomes. It was assumed that QTLs explain 100 % of genetic variance. QTL allele effects were 
sampled from a gamma distribution with a shape parameter of 0.4, and the phenotypes were 
generated summing the effects of 1,000 randomly selected segregating QTLs to an error term 
sampled from a normal distribution with zero mean and variance of 0.86. Ten replicates of the 
simulation process were performed. More details about the simulation are available in Melo et al. 
(2016). 

 
Statistical methods. Two statistical methods were used to perform the GWAS, namely weighted 
single-step GBLUP (WssGBLUP; Wang et al. 2012) and BayesC (Habier et al. 2011). The model 
adopted for WssGBLUP was: y=1µ+Zaa+e, where y is the vector of phenotypes, µ is the overall 
mean, a is the vector of additive genetic effects, 1 is a vector of ones, Za is an incidence matrix 
relating the phenotypes to a, and e is the vector of residuals. The covariance between a and e was 
assumed to be zero and their variances were considered to be Hσa

2 and Iσe
2, respectively, where σa

2 
and σe

2 are the direct additive and residual variance, respectively, H is the matrix which combines 
pedigree and genomic information (Aguilar et al. 2010), and I is an identity matrix. The SNP effects 
(û) were calculated as in Stranden & Garrick (2009): û=DP’[PDP’]-1ag, where D is a diagonal 
matrix that contains the weights for the SNPs, P is a matrix relating genotypes of each locus (coded 
as 0, 1 or 2 according to the number of copies of allele B) and ag is a vector with the estimated 
breeding values of genotyped animals. D, â and û were iteratively recomputed over three iterations. 
In the first iteration (w1), the diagonal elements of D (di) were assumed to be 1 (i.e., the same weight 
for all markers). For the subsequent iterations (w2 and w3), di was calculated as: di=ûi2pi(1-pi), 
where ûi is the allele substitution effect of the ith marker, estimated from the previous iteration, and 
pi is the allele frequency of the second allele of the ith marker. The WssGBLUP was adopted using 
two sets of data, one considering all available phenotypic information (SI; n=45,000) and another 
considering phenotypes just from genotyped animals (SII; n=2,000). The three different weights for 
the SNPs (w1 to w3) and the two sets of data (SI and SII) resulted in six different solutions for the 
SNP effects obtained under the WssGBLUP method. BayesC was applied under the model: 
y=1µ+∑ gibi

n
i=1 δi+e, where y, 1, µ and e are as previously described, gi is the vector with the 

genotype of the animals for the ith SNP, bi is the vector containing the allele substitution effect of 
the ith SNP and δi is an indicator variable (0, 1), with parameter π, where π is the fraction of SNPs 
not included in the model. Two π values were used, 0.99 or 0.999. The genotypes were coded as AA 
= 0, AB =1 and BB = 2. In summary, a total of 8 analyses were performed: WssGBLUP SI and SII 
(w1, w2 and w3), and BayesC (π=0.99 and π=0.999). The GWAS results were compared based on 
the proportion of variance explained by SNPs within consecutive 1Mb windows. For each analysis, 
the top 20 marker windows, which explained the greatest proportion of genetic variance, were 
identified and their locations were contrasted with the true QTL position. A true QTL was considered 
to be mapped when a top marker window was located no more than 1 Mb from a true QTL that 
explained at least 1% of the genetic additive variance. 
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RESULTS AND DISCUSSION 
The simulation process resulted on average in 16.7 (±2.8) QTLs explaining 1% or more of the 

genetic variance. Together, the true QTLs explained on average 29.7% (±4.9) of the genetic 
variance, with the most important QTL explaining on average 5.1% (±2.4). The different analyses 
presented poor ability to map the QTLs. Individually, they were able to identify between 5.4% 
(WssGBLUP; SII; w3) and 17.4% (WssGBLUP; SI; w2) of the true QTLs. The power of QTL 
mapping increased when a window was detected as significant by different analyses (Figure 1). The 
percentage of true associations increased along with the number of analyses, reaching a maximum 
of 100% (i.e. 0% of false positives) when a window was identified as important by 7 or 8 analyses. 
Although presenting just true associations, windows identified in 7 or 8 analyses were able to detect 
just part (60.5%) of the true QTL, since some QTL were not mapped by 7 or 8 analyses, however 
this percentage is still high compared with the worse scenario (1.7%) in which a window was 
detected just by 1 analysis. The maximum percentage of true QTLs identified was observed when a 
window was considered as important in 5 analyses, where 96% of the true QTL were identified. This 
scenario (5 analyses) presented, however, 10.8% of false positive associations (Figure 1).   

 

 
 

Figure 1. Percentage of true associations and of true QTL detected according to the number 
of analyses in which a marker window was identified as important 

 
Our results are in accordance with Legarra et al. (2015), who recommended using different 

methods to map QTL more efficiently, arguing that no method is markedly more powerful, being 
dependent on the genetic architecture of the trait. Van den Berg et al. (2013), assessed through 
simulation the power of BayesC and BayesCπ to detect QTL, and also observed poor ability to detect 
QTL for lowly heritable complex traits. Unfortunately, the authors did not test if the agreement 
between results of the different methods/analyses increased the power of QTL detection.  

Although our simulation study did not cover all factors affecting the QTL detection in real 
complex traits, the results provide evidence that the agreement among results from different 
statistical GWAS methods may be a feasible strategy to map QTL more precisely, especially for 
lowly heritable polygenic traits. Further studies may investigate the optimal number and 
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combination of statistical methods, under different scenarios of heritability, number of genotyped 
animals family structure, effective population size, genetic architecture and considering other 
definitions of true QTLs, which would result in improved power of QTL detection. 

In conclusion, our simulation approach demonstrated that agreement among GWAS results from 
different statistical methods can be used as a strategy to increase the power of QTL detection. This 
is a promising approach in the context that genomic selection can benefit from identification of true 
QTL (Pérez-Enciso et al. 2015). Our future proposition is to apply these methods to field data 
collected on beef cattle farms, targeting complex traits. 
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