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SUMMARY 

Principal component analysis (PCA) using genome-wide single nucleotide polymorphism 
(SNP) genotype data is traditionally used to determine distinct groups in a population. We present 
a novel numerical approach to quantify the importance of each gene to the emerging clusters as 
informed by PCA. Our method is based on modelling the coefficients (SNP weights) of the first 
principal component using mixtures of Normal distributions. We applied our approach to three 
distinct datasets of cattle, chicken, and sheep. We were able to identify subsets of genes in the 
cattle and chicken genomes that are likely to be important determinants for understanding the 
phenotypic differences among various disparate livestock populations. 

 
INTRODUCTION 

The utility of PCA in discriminating individuals according to breed differences has been well 
documented in the literature. The Bovine HapMap Consortium used PCA as a central method in 
the elucidation of genetic structure across biologically diverse breeds (Gibbs et al. 2009). Other 
studies relied on PCA to measure the genetic divergence between indicine and taurine cattle 
(Bertolini et al. 2015). PCA also informs machine learning based classification methods to predict 
the individual ancestry of cattle (Bertolini et al. 2015). 

 In our study, we used PCA as a starting point to identify a set of genes that have the 
discriminatory power to identify the lineage of a particular population. We build a model based on 
the contributions of the SNP to the first principal component (PC1). These are the coefficients of 
the PC1 which are produced as part of the PCA. The empirical distribution of the SNP reveals 
distinct modes. We used the output from PCA as a first step to project the data on to the maximum 
variable direction and used statistical machine learning based mixture modelling to quantify the 
contribution of genes to the respective lineages.  

 
MATERIALS AND METHODS 

Animals and genotypes. We tested our method on three datasets - cattle, chicken, and sheep.  
Cattle: We used data from 18,363 animals and 19 breeds belonging to the Beef CRC 

(http://www.beefcrc.com) and Nelore data from Mudadu et al. 2016. The cattle belong to a 
spectrum of lineages ranging from pure Bos indicus (BI; N=5,536 cattle) to pure Bos taurus (BT; 
N=7,589). Additionally, we have 5,238 cattle that are crossbred or tropically adapted composites 
which are classified as Bos taurus – Bos indicus (BTI) breeds. The original data had genotypes for 
729,068 SNP. We considered SNP located in autosomal chromosomes and mapped within 1Kb of 
a known gene to capture SNP associated with protein-coding regions. We further pre-processed 
the data so that we retained those genes that have at least the median number of 6 SNP to ensure 
that the genes are minimally represented. The final dataset contained 246,864 SNP in 8,631 genes. 

http://www.beefcrc.com/
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Chicken: The data were from 988 chickens from 4 commercial lines of broilers (Hudson et al. 
2015), denoted as Lines A (N = 204), B (N = 244), C (N = 254), and D (N = 286). Lines A and B 
have been generated to select females, whereas lines C and D are to select males. The data had 
genotypes for 51,713 SNP. After removing monomorphic SNP and retaining those within 20 Kb of 
a gene (Reyer et al. 2015), we considered 36,395 SNP located in 12,642 genes. 

Sheep: We used data from the Sheep Hapmap project (http://www.sheephapmap.org/) 
including 1,222 animals distributed across 9 regions and genotypes for 49,034 SNP. We 
considered SNP that were not monomorphic and those within 30 Kb of a known protein coding 
gene (Miller et al. 2011), which resulted in 26,077 SNP spanning 12,737 genes. 

 
Principal Component Analysis and Gene contribution to lineage. We used PLINK (Chang 

et al. 2015) to perform the principal component analysis (PCA) and considered only the PC1 as it 
explains the maximum variability in the data and extracted the weights of each SNP to that 
component. We used mixture modelling to quantify the contribution of the genes to the lineages. 

Mixture modelling is a statistical method to construct a probability distribution by combining 
the effects due to several component probability distributions. We considered the Normal 
component distributions to model the probability of the SNP weights in PC1, which were best 
modelled using two component distributions. Formally, a two-component mixture is defined as  

Pr(𝑥𝑥) = 𝑤𝑤 𝒩𝒩(𝑥𝑥; 𝜇𝜇1,𝜎𝜎1) �����������
𝑝𝑝1

+ (1− 𝑤𝑤) 𝒩𝒩(𝑥𝑥; 𝜇𝜇2,𝜎𝜎2) ���������������
𝑝𝑝2

 

where 𝑥𝑥 corresponds to the data (SNP weights in PC1), Pr(𝑥𝑥) is the probability distribution of the 
mixture, 𝑤𝑤 is the weight of the first component in the mixture, 𝜇𝜇1,𝜇𝜇2 and 𝜎𝜎1,𝜎𝜎2 denote the means 
and the standard deviations of the two Normal (𝒩𝒩) components, respectively. As part of statistical 
inference, the mixture parameters, that is, 𝑤𝑤, 𝜇𝜇1,𝜇𝜇2,𝜎𝜎1,𝜎𝜎2 were estimated using the EMMIX 
software (McLachlan et al. 1999). After estimating the mixture parameters, the contribution of 
each SNP to each components is given by its posterior probability, that is,  

𝑚𝑚1 =
𝑝𝑝1

𝑝𝑝1 + 𝑝𝑝2
  and  𝑚𝑚2 =

𝑝𝑝2
𝑝𝑝1 + 𝑝𝑝2

 

where m1 and m2 are the posterior probabilities of the given SNP to belong to the first and second 
component, respectively. The values p1 and p2 constitute the two parts of Pr(x). Note that 𝑚𝑚1 +
 𝑚𝑚2 = 1 which implies that for a given gene, m1 and m2 correspond to the contributions 
(memberships) of that gene to the two components of the mixture. As an example, to estimate a 
gene’s contribution to the indicine content in bovine genome, we average the posterior 
probabilities (m1 values) of the corresponding SNP in its coding region. A gene contributes to both 
the indicine and taurine components of the bovine genome. The value m1 denotes the amount of 
contribution (as a percentage) to the indicine lineage. We infer that the left mode corresponds to 
Bos indicus because the animals with negative SNP weights are Nelore/Brahman cattle. 

 
RESULTS AND DISCUSSION 

The PCA of the cattle and chicken datasets reveals distinct clusters based on their respective 
lineages; the Bos indicus, Bos taurus and Bos taurus – Bos indicus breeds are separately clustered 
(Figure 1a). The PC1 and PC2 explain 21.8% and 2.3% variation in the data respectively. 
Similarly, for the chicken dataset, we observe Lines A and B distinctly clustered whereas Lines C 
and D are overlapping (Figure 1b). Mixture modelling of the SNP weights along PC1, (Figure 
1c,d) resulted in distinct modes corresponding to the indicine and taurine components of the 
bovine genome. The estimate of the mixing proportion is 𝑤𝑤 = 0.31 establishing an effective 
membership of 31% Bos indicus and 69% Bos taurus genes for this particular population. For the 
chicken data, PC1 and PC2 explain 22% and 3.6% variation in the data, respectively. The value 
𝑤𝑤 = 0.49 implies an almost equal number of genes contributing to male and female lines. 

http://www.sheephapmap.org/
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 Further, 64 and 718 genes have a contribution of at least 95% to the indicine and taurine 
components, respectively. In the chicken genome, there are 1,072 and 1,386 genes with least 95% 
contribution. The study of these candidate genes can aid our understanding of ancestry-related 
differences in gene expression and susceptibility of a given lineage to exhibit a certain phenotype. 
 

 
The PCA of the sheep data revealed a cluster with sheep (Outgroup, Wildsheep) widely scattered 
and having negative PC1 values (Figure 2a). On removing these outliers, we note a star-shaped 
cluster (Figure 2b) with PC1 and PC2 accounting for 4.5% and 2.2% variation, respectively. 
Mixture modelling shows three distinct modes for the full data (Figure 4c), whereas there is a clear 
unimodal distribution for the filtered data (Figure 4d). This finding highlights the importance of 
pre-processing the data prior to our analysis. Kijas et al. (2012) suggests the absence of distinct 
lineages and strong historic mixing, in agreement with our observation of a unimodal distribution.  
 
CONCLUSIONS 

Our method based on the mixture modelling of SNP weights captures the genes responsible for 
the underlying population structure and potentially serves to establish a relationship between the 
evolutionary structure and phenotypic variation in livestock populations. 

 
                               (a) Cattle                                                  (b) Chicken 

 
                              (c) Cattle                                                  (d) Chicken 
Figure 1. (a)-(b) PCA of SNP genotypes resulting in distinct clusters of animals based 
on their lineages. (c)-(d) Mixture modelling of SNP weights along PC1. Red indicates 
the actual distribution of SNP weights, grey curves are the individual Normal 
distributions, and black curve is the mixture model obtained by combining the two 
Normal distributions based on the mixing proportions 
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                         (a) Full dataset                                           (b) Filtered dataset 

     
                          (c) Full dataset                                         (d) Filtered dataset 
Figure 3. PCA and mixture modelling of SNP weights for the Sheep Hapmap data. 
The full and filtered datasets consist of 1,222 and 1,105 animals respectively 


