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SUMMARY 

Structural variants (SVs) have eluded easy detection and characterisation, particularly in non-
human species.  However, there is increasing evidence that SVs not only contribute a substantial 
proportion of genetic variation but have significant influence on phenotypes.  Here we present 
discovery of copy number variants (CNVs) (a subset of SVs) in a prominent New Zealand dairy 
bull using long read PacBio sequencing technology. Validation of CNVs was undertaken utilising 
whole genome Illumina sequencing of 557 cattle representing the wider New Zealand dairy cattle 
population. The ability to utilise CNVnator to “genotype” the 557 cattle for copy number across all 
regions identified as putative CNVs, allowed a genome-wide assessment of transmission level of 
copy number based on pedigree. The more highly transmissible a putative CNV region was 
observed to be, the more likely the distribution of copy number was multi-modal across the 557 
sequenced animals. This transmission based approach was able to confirm a subset of CNVs that 
segregates in the New Zealand dairy cattle population. Genome-wide identification and validation 
of CNVs is an important step towards their inclusion into genomic selection strategies. 

 
INTRODUCTION 

The introduction of genomic selection to dairy cattle breeding has increased the rate of genetic 
gain.  To date, genomic selection has largely focused on the utilisation of SNPs and very small 
insertions or deletions. Very little regard has been given to larger variations such as CNVs.  While 
SVs (including CNVs) account for the greatest amount of total polymorphic content among 
individual genomes (Weischenfeldt et al. 2013), the focus on SNPs and small indels is presumably 
due to the ease with which such variation can be genotyped at a minimal cost.  However, advances 
in genomic technologies are resulting in an increasing amount of evidence indicating that these 
larger sequence variations make important contributions to genetic and phenotypic variation 
(MacDonald et al. 2014, Zarrei et al. 2015, Sudmant et al. 2015, Weischenfeldt et al. 2013).  No 
single technology, detection strategy, or algorithm can capture the entire spectrum of SVs in the 
genome. The collective effort of the human 1000 Genomes Project has utilised both a variety of 
SV detection platforms and algorithms to generate an integrated map of 68,818 SVs in unrelated 
individuals (Sudmant et al. 2015). This is now considered the gold standard SV list in humans, yet 
the authors still state that “SV discovery remains a challenge nonetheless, and the full complexity 
and spectrum of SV is not yet understood” (Sudmant et al. 2015). 

 
The desire to have a comprehensive list of SVs in a population is not unique to human 

genomics, however, SV detection is critically dependent on the quality of genome assembly, 
which for species such as cattle, lags behind the quality of the human genome.  Furthermore, while 
SV/CNV detection algorithms invariably report the presence of large numbers of CNVs in each 
individual, these detection algorithms are plagued with a high rate of false discovery.  Without a 
gold standard with which to compare detected variants, case by case validation is a lengthy process 
and not suited for genome-wide analysis. 
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In animals such as cattle, a desire to understand the genome is driven by production traits and 
the desire to predict animal performance at an early age through genomic selection.  As 
widespread genotyping and imputation of genotypes to sequence level (Druet, Macleod, and Hayes 
2014) becomes more common, there is an increasing need to not only capture SNP variation, as 
CNVs may severely impact imputation (LIC unpublished data), and also be associated with, or 
contribute to important production trait phenotypes (Kadri et al. 2014, Xu et al. 2014). 

 
The recent availability of long read single molecule sequencing (up to 80 kilobases (kb)) 

provides a new technology for the identifications of CNVs.  This technology offers the possibility 
of single reads that span complex CNVs (Sedlazeck et al. 2015). We have utilised long read single 
molecule sequencing of a New Zealand Holstein Friesian bull with the vision of improving 
imputation and ultimately genomic selection and association studies. 

 
MATERIALS AND METHODS 
PacBio Sequence and SV Detection: PacBio long read sequences were generated from a Zealand 
Holstein-Friesian bull by Cold Spring Harbor Laboratories. The PacBio SMRT pipeline was 
used to generate filtered sub reads in fastq format. Alignment of reads to the UMD 3.1 bovine 
genome assembly was undertaken using BWA-MEM (v0.7.12; https://arxiv.org/abs/1303.3997) 
with options “–M –x pacbio”.  

SVs were called using Sniffles (v0.0.1 https://github.com/fritzsedlazeck/Sniffles). Structural 
variants displaying > 95% reciprocal overlap with a UMD3.1 contig were removed as these likely 
represent genome assembly errors. Further filtering retained only SVs present in a single contig. 
Illumina Sequence and CNV Genotyping: Illumina HiSeq sequencing of 557 animals 
representing the population structure of New Zealand dairy cattle and phenotypes of interest 
has previously been described (Littlejohn et al. 2016).  Read-depth-based CNV genotyping 
analysis was undertaken across the genome of animals sequenced on the Illumina HiSeq platform 
using CNVnator v0.3 (Abyzov et al. 2011) using a bin size of 150bp. Based on breakpoints 
identified by Sniffles, copy number was determined for each CNV greater than 100bp in length in 
each of 557 animals.  Mendelian inheritance of copy number was assessed using a mixed linear 
model.  The independent variables were the fixed effect of the mean and the random effect of the 
animal. The dependent variable was the copy number. The variance of the additive genetic effect 
of animal was based on a pedigree of each animal and their sire and dam, traced for seven 
generations.  ASREML-r (version 3.0) (Gilmour et al. 2009) was used for estimation of variance 
components. The variance associated with the animal effect is analogous to the additive genetic 
variance and heritability is additive genetic variation/phenotypic variation, however, in terms of 
CNV inheritance, “transmission level” is used instead of the term heritability. A transmission level 
of 0 indicates either a denovo mutation in Esteem, or a sequencing artefact, or alternatively a 
transmission level of 1 indicates that the copy number is inherited in a Mendelian fashion. 
Effect of CNVs on phasing allelic R2:Using sequence data from all 557 animals, phasing allelic 
R2 (AR2) was determined for, each SNP within the 936 CNV regions found to have high 
transmission levels, each SNP outside the CNVs, and each SNP 50, 100, 500, 1000, 3000bp either 
side of the CNVs. 
 
SNP tagging of CNVs: Correlations between copy numbers for each for the final 2661 CNVs and 
genotypes from 50K Illumina SNPchip or full sequence were determined. 
 
RESULTS AND DISCUSSION 

A total of 32x PacBio coverage of the bovine genome (UMD3.1) was generated. Sniffles 
software identified a total of 38,709 putative SVs of which 19,797 were CNVs (deletions 
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n=18,577, duplications n=1220). Of the 3532 CNVs (deletions n=3055, duplications n=477), that 
remained after filtering, sizes ranged from 1 – 79,450bp with a median size of 321bp (mean size of 
818bp).  CNVs smaller than 100bp (n=869) were excluded from further analysis as copy number 
could not be accurately predicted by CNVnator (2661 CNVs remained). 

 Using CNVnator in genotyping mode we were able to determine copy number at all putative 
CNV locations identified by PacBio sequence in all 556 animals. These CNV genotypes were used 
as ‘phenotypes’ in order to allow the copy number transmission level to be estimated using 
ASREML in an attempt to make a distinction between real CNVs and the many false positives 
detected when calling CNVs from short read sequencing. Putative CNVs showed a wide range of 
transmission levels. Approximately 30% of CNVs called from PacBio sequence showed high 
transmission level (936 CNVs > 0.70). Sorting CNVs by level of transmission and plotting 
distribution of copy number in the population indicated a trend of increasing multimodality of 
copy number with increasing transmission level.  Many of the CNVs with a calculated 
transmission level of greater than 0.6 showed a clear bi- or trimodal distribution of copy number 
across the 557 animals.  The multimodality of copy number, together with visual observation of 
bam files containing sequencing read-depths, insert size, and the presence of split reads are all 
consistent with the detection of bona fide CNVs, provided strong evidence that these highly 

tranmissible CNVs were likely to be present in 
our population. The observation that many  of 
these trimodal distributions represented 
deletions (0, 1, vs 2 copies) reflects, at least in 
part, the relative ease with which deletions are 
able to be detected relative to duplications, due 
to the large proportional differences in 
sequence content for deletions (Abyzov et al. 
2011). 

Figure 1 illustrates the detrimental effect of 
CNVs on the ability to correctly phase SNP 
genotypes, not only within the CNV itself, but 
also in the surrounding sequence.  Given the 
vast number of CNVs even in this one 
individual, it is expected that accuracy of 

imputation will be negatively affected by the inability to phase the reference sequence accurately.  
  While the data presented here is not a comprehensive list of CNVs in the New Zealand dairy 

cattle population, it does illustrate the potential of long read single molecule sequencing as an 
additional valuable source for identification of CNVs.  Furthermore, long read sequence 
information, combined with independent short read sequencing and pedigree information in 557 
animals representative of the population provide compelling evidence of the existence of CNVs in 
our dairy cattle population, and are not simply false positive results and allows us to begin a 
catalogue of CNVs. Characterisation of population CNVs has two major benefits to the cattle 
breeding industry.  Firstly, once identified, CNVs may be cheaply identified alongside SNPs by 
simply adding appropriately designed probes to existing SNP chip genotyping platforms and 
including CNV genotype information as an additional source of genetic variation in genomic 
prediction models. Secondly undertaking imputation in a CNV aware manner to bypass poor 
phasing and increase imputation accuracy.     

It could be argued that much of the CNV variation is already captured by SNP in linkage 
disequilibrium with CNVs. However, it is unlikely that multi-allelic CNVs would be accurately 
tagged using bi-allelic SNP, and initial reports indicate that around 20% of large CNVs identified 
from SNP chip platforms are not well tagged (Xu et al. 2014). Figure 2 illustrates the correlation 
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between CNV and SNP genotypes on the 50K 
SNPchip as well as from sequence. Our results 
indicate that very few of the 936 highly transmissible 
CNVs are tagged well by SNP on the 50K SNPchip, 
and unsurprisingly many more CNVs are well tagged 
by sequence derived SNPs.  Our current genomic 
selection protocols utilise only SNPs present on the 
50K SNPchip, and therefore, to date, only a very 
limited amount of genetic variation from CNVs is 
being captured and utilised.  As a move towards 
including sequence derived SNPs that tag CNVs 
could help in improving the accuracy of genomic 
selection 

From a practical perspective, the presence of 
CNVs may have implications for phasing and 
imputation of other classes of variants.  Given the 

increasing use of imputation of SNP chip genotypes to whole genome sequence, understanding 
where CNVs are located in the genome and ideally devising strategies for their correct imputation 
are of great importance for accurate genome-wide imputation and the generation of accurate 
genotype information to be utilised in genomic prediction models. 

 
CONCLUSION 

We present here the first step towards a gold standard list of CNVs in dairy cattle by utilising 
both long and short read sequencing technologies together with conservative filtering steps and an 
easy genome-wide strategy for assessing the Mendelian inheritance. Collectively this provided 
compelling evidence that these SVs do segregate in the population. Given the increasing use of 
imputation strategies being used in cattle breeding, identification and characterisation of CNVs 
(and all classes of SVs) will lead to improved imputation accuracy and will ultimately contribute 
to improved genomic prediction. 
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