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SUMMARY 

Selection should favour alleles which increase profitability considering their effects across all 
important traits. Therefore, understanding pleiotropy is an important aim. Obviously if traits are 
genetically correlated they must share some causal variants but it is possible that even uncorrelated 
traits share some causal variants. Here we analyse 25 traits on Australian dairy cattle. The 25 raw 
traits (RTs), covering milk production, fertility, behaviour, somatic cell count and conformation, 
of 2841 bulls were used to calculate uncorrelated principal components (PCs) and Cholesky 
transformation traits (CT). Multi-trait meta-analyses of single-trait genome-wide association 
studies (GWAS) for RT, PC and CT in these bulls were validated in 6821 cows. We observed a 
positive relationship between heritability estimates and the number significant SNPs detected in 
RTs and CTs. However, there was no relationship between the phenotypic importance of PCs and 
the number of significant SNPs detected. The major dairy cattle locus DGAT1 not only affected 
dairy production traits, also had validated small effects on fertility, milk speed and temperament. 
Our results highlight the importance of using genetic information of all traits to maximise 
pleiotropy detection and prioritise multi-trait genetic markers for the dairy industry.  

 
INTRODUCTION 

The profitability of dairy farming depends on many traits including milk production, fertility, 
diseases, workability and conformation or type traits (Byrne et al., 2015). Therefore, genomic 
selection should target genetic variants that increase an economic combination of traits such as the 
balanced performance index (BPI). When identifying genetic markers, such as single nucleotide 
polymorphisms (SNPs), associated with economic traits, we need to know the effect of the marker 
on all economic traits not just those where the marker has the biggest effect. That is, we would like 
to understand the pleiotropic effects of genes across all important traits.  

Widespread pleiotropic effects of SNPs have been observed in beef cattle (Bolormaa et al., 
2014) and sheep (Bolormaa et al., 2016). If traits are genetically correlated there must be some 
genes that affect both traits. However, it is also possible that uncorrelated traits share some causal 
variants. Principal component (PC) analysis, producing a small number of uncorrelated traits, has 
been proposed for conducting multi-trait genetic analysis (Klei, Luca, Devlin, & Roeder, 2008). If 
genes act through a limited number of physiological pathways, principle component analysis 
might capture the most important pathways in the first few PCs leading to a simple picture of 
pleiotropy.  

To further understand pleiotropy in the dairy cattle population, a dataset from the Australian 
Dairy Herd Improvement Scheme (ADHIS) with 25 traits recorded on 9662 animals was retrieved. 
These 25 raw traits (RTs), including milk production, survival, fertility, temperament and linear 
type traits, were used to construct uncorrelated PCs and Cholesky transformed traits (CTs) (Golub 
& Van Loan, 2012). RTs and generated PCs and CTs were analysed with multi-trait genome-wide 
association studies (GWAS).  
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MATERIALS AND METHODS 
Analyses included genotype of 2841 bulls as the discovery population and 6821 cows as the 

validation population from the breeds Holstein, Jersey and Australian Red. The distribution of 
genomic relatedness of bulls and cows in three breeds were shown in Figure 1. SNPs were 
genotyped by Illumina BovineLD BeadChip (7K), Illumina Bovine SNP array (54K) and Illumina 
Bovine HD genotypes (777 K). All animals were imputed to HD genotypes using Fimpute 
(Sargolzaei, Chesnais, & Schenkel, 2014) and in total, 632,002 SNPs were used. SNPs with minor 
allele frequency <0.01 or significant departure from Hardy-Weinberg equilibrium (p<0.001) were 
filtered out. The 25 phenotypic traits of these animals (trait deviations for cows and daughter trait 
deviations for bulls) were from the April 2016 genetic evaluations from the DataGene. Daughter 
trait deviations were the average trait deviations of a bull’s daughters and all phenotypes were pre-
corrected for known fixed effects. 

The generation of PCs for the nth animal (un) was based on eigen-decomposition of k=25 RTs 
(gn): nn gTu '= ; Where un was a k × 1 vector of PC scores for the animal n; T was an k × k matrix  
of eigenvectors such that the variance matrix of the PC Var(T’g) = D, a diagonal matrix of 
eigenvalues; gn was an k × 1 vector of RT for animal n. The CT scores for the nth animal (cn) were 
calculated based on the Cholesky decomposition: nn gLc 1−= ; where; L was the k × k matrix of the 
Cholesky factors which satisfied LLt= V(g), the k × k covariance matrix (Golub & Van Loan, 
2012); gn was a k × 1 vector of RT for the animal n. Single-trait GWAS was performed in 
GEMMA (Zhou & Stephens, 2014) using data from the discovery population: 

eGRMSNPeffectsfixedmeany i ++++= ; where y = vector of k RTs, PCs or CTs for bulls; fixed 
effects= breeds; SNPi = that each SNP genotype was fitted as a covariate one at a time; a polygenic 
random effect described by the GRM= genomic relatedness matrix calculated from GEMMA 
based on all SNPs; e  = error. A multi-trait meta-analysis based on either the 25 RTs, 25 PCs or 25 
CTs followed previous procedures (Bolormaa et al., 2016; Bolormaa et al., 2014). SNPs that were 
significant in the discovery sample were tested in the validation sample using an index of traits 
that maximises the effect of the SNP (Bolormaa et al., 2016; Bolormaa et al., 2014). Single-trait 
GWAS in the validation population was also used to confirm SNP effects on individual RTs.  
 

 
Figure 1. Density plot of the genomic relationship matrix between bulls and cows 
 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:145-148 

147 

RESULTS AND DISCUSSION 
For both RTs and CTs, the number of significant (P<1×10-5) SNPs detected by single-trait 

GWAS generally increased with the estimated heritability of the phenotype because the power to 
detect effects increases with h2 (Figure 2A,B). (The heritability of bull phenotypes is the 
proportion of variation in daughter trait deviation explained by all SNPs jointly).  Consistent with 
previous reports (Kemper et al., 2015; MacLeod et al., 2016), the RT of milk, protein and fat yield 
had the highest heritability estimates (all h2>0.8 and se=0.02) and the largest numbers of 
significant SNPs (more than 100) detected. Survival and fertility as reproductive complex traits 
had mid-range heritability estimates (both h2>0.5 and se=0.03) with 27 and 31 significant SNPs 
detected, respectively. Mid-range heritability was also estimated for temperament and milk speed 
(both h2>0.5 and se=0.03). However, single-trait GWAS only detected 6 and 13 significant SNPs 
for temperament and milk speed, respectively. The h2 of likeability is 0.48 (se=0.03) with only 
four significant SNPs detected. The heritability estimates of dairy type traits ranged from 0.35 
(rear legs set, se=0.04) to 0.69 (front teat placement, se=0.03). However, all type traits had a small 
number of significant SNP detected. Rear legs set had 15 significant SNPs and front teat 
placement had only 1 significant SNP. This is likely to be due to the complexity of the type traits, 
i.e. a large number of causal variants each with a very small effect. Our discovery sample size may 
not be large enough to capture highly significant SNPs.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The relationship between heritability estimates and the number of significant SNPs 
detected by single-trait GWAS for RTs (A), CTs (B) and PC (C). D: The relationship 
between the heritability estimates of each PC and the total phenotypic variance explained by 
each PC 

 
The 25 PCs, accumulatively explained 93% of the total phenotypic variances, showed a 

complicated pattern (Figure 2C,D). The first PC, which explained 25% of total phenotypic 
variances for all RTs, had a high estimation of heritability (0.67, se=0.03) but only 5 significant 
SNPs. This PC had loadings from many traits and perhaps this generates a very complex trait 
affected by many genes. On the other hand, PC18 with top factor loading related to milk fat yield, 
only contributed 1.7% of the variances to all traits, had a modest heritability (0.53, se=0.03), but 
had the largest number of significant SNPs (241) amongst the PCs. The last PC (PC25) with high 
positive factor loading for protein yield and high negative factor lading for milk yield, explained 
0.03% of the variances in all traits, had a modest heritability (0.50±0.03) but l53 significant SNPs. 
Our results are consistent with a previous simulation study in humans where the genetic 
information of all PCs are important (Aschard et al., 2014). Thus, only considering a small number 
of PCs might cause loss of power for genetic analysis. 

Thus the results do not support the hypothesis that genes act through a small number of 
common, physiological mechanisms. This is exemplified by SNPs within and near DGAT which 
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have significant effects on several PCs. This occurs because the effects of DGAT do not follow the 
pattern described by the overall genetic correlations. For instance, milk and fat yield are positively 
correlated but the allele of DGAT which increases milk decreases fat yield.  

Three multi-trait meta-analyses were performed based on either all RTs or PCs or CTs. The 3 
meta-analyses largely detected the same significant SNPs as they are all approximations to a full 
multi-trait analysis. They also detected many more significant SNPs than single-trait GWAS using 
the same threshold (P<1×10-5 and FDR<0.01) (Figure 3A,B).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. A-B: Manhattan plot of multi-trait meta-analysis. C: t values with absolute values 
>1 of DGAT1 across traits 

 
DGAT1 was the most significant locus in the multi-trait analysis (Figure 3A,B) with effects on 

many RT, PCs and CTs. Along with the strong effects on production traits, DGAT1 also had small 
but validated effects on fertility, milk speed, temperament and type RTs, which are important 
information for the breeders (Figure 3C). This highlights the advantage of conducting multi-trait 
analysis in extending knowledge for unknown effects of known loci.  Most SNPs did not have a 
significant effect on many traits as DGAT did but this may indicate a lack of power rather than a 
lack of pleiotropic effects. If the example of DGAT is repeated for other loci it is important 
because it indicates that SNPs with a small effect on one trait may be detected by their large effect 
on another trait. 
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