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SUMMARY 
Advanced animal breeding in aquaculture has reached a tipping point where the commercial 
implementation of genomic selection to improve productivity and disease resistance is becoming 
reality. However, the success of practical implementation of genomic selection depends on the 
specific aquaculture species, production system and available phenotyping and genetic resources. 
Using the experience learned from commercial programs for pearl oysters and marine shrimp, we 
highlight current benefits and options in cost-effective high-throughput genotyping and phenotyping 
technologies for genomic selection applications relevant to aquaculture species, followed by 
discussion of some of the lessons learnt when dealing with its practical implementation, including 
what is needed to build adequate genotype resources for non-model species; confounded breeding 
objective verse trait measurements; complex traits and unknown interactions; multi-family breeding 
schemes; multi-stage selection schemes, and transition to a genomic selection breeding program 
incorporating minimisation of inbreeding. 
 
INTRODUCTION 

Classical breeding programs for farmed plant and animal species are based on phenotypic selection 
of individuals in conjunction with knowledge on genetic relationships and quantitative genetic 
principles. Breeders have enhanced production traits of farmed species by selecting superior 
individuals as parents for succeeding generations. However, the efficiency of this method is limited 
when traits are difficult-to-measure, can only be measured late in life, are sex limited, or have low 
heritability. Over the past two decades, rapid developments in genomics have resulted in breeders 
incorporating genetic marker technology in the form of Marker Assisted Selection (MAS) to aid in 
the animal selection process. Although this technique can be useful for some simple traits, 
application of MAS to improve complex traits controlled by many genes of small effect is limited. 
Genetic improvement in these traits can only be achieved through more advanced genomic methods 
(Eggen 2014). 

With recent advances in molecular biotechnology and quantitative analysis methods, it is now 
possible to accurately predict and use genome-wide molecular breeding values for improved animal 
selection. This approach is termed Genomic Selection (GS) and was first proposed by Meuwissen 
et al. (2001), and has gained significant application within the animal genetics community. In this 
approach, animal selection decisions are based on genomic breeding values (GBVs) predicted from 
genome-wide loci. GS is based on the theory that with sufficiently high numbers of loci across the 
genome, most quantitative trait loci will be in strong linkage disequilibrium with at least one marker. 
GS simultaneously estimates the combined genetic effects of all relevant genes and provides 
accurate predictions of genetic merit for a trait. Furthermore, genome wide markers can be directly 
use to compute the genomic relationship matrix (GRM), which can then be used to compute genomic 
breeding values using standard mixed model equations. GRM, even based on a smaller subset of 
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markers, can provide an accurate estimate of the proportion of the genome shared by related 
individuals and hence provides higher accuracy of estimation of breeding values as compared to 
estimates based on pedigree information alone (Forni et al. 2011). 

Integration of GS methods into aquaculture breeding programs promise to rapidly increase 
genetic gains through improved accuracy of breeding value estimation. GS has the highest potential 
for traits that cannot be directly measured on the selection candidates and can be used to capture 
both within- and between-family genetic variances (Nielsen et al. 2009). This makes genomic 
selection a powerful approach in aquaculture, since many traits (eg., disease resistance, carcass 
quality and pearl quality traits) must be measured on the siblings of the actual selection candidates, 
rather than the selected candidates themselves. Furthermore, GS can minimise inbreeding while 
maximising genetic gain beyond that of current practices (Daetwyler et al. 2007). This is of 
particular benefit to aquaculture where species are often highly fecund and the number of 
contributing families reared in closed farms is low, resulting in rapid inbreeding if pedigree is not 
tracked (Gjedrem 2005). Despite all of these advantages, a limited number of aquaculture breeding 
companies and associated research programs are attempting to implement GS into commercial 
operations for long-term genetic gain (eg., Tsai et al. 2017; Khatkar et al. 2017a; Jones et al. 2017). 

The success of the practical implementation of GS in aquaculture production systems depends 
on the breeding objectives, selection criteria, infrastructure, genomic resources and phenotypic 
recording / analysis systems. Each of these aspects can have different challenges depending on the 
specific aquaculture species and production system. Here we aim to provide an overview of the 
opportunities for the adoption of genomic selection within aquaculture, with particular focus on the 
challenges of implementation and long-term use in aquaculture commercial systems. 
 
VALUE OF GENOMIC SELECTION IN AQUACULTURE 

The breeding design of aquaculture species is primarily governed by the biology of the animal 
and available farm resources. Commercial selective breeding programs have recently expanded to a 
diverse range of species (eg., crustaceans such as shrimp, oysters and finfish). Primarily, most 
aquaculture selection programs have focused on growth, which can be selected easily based on either 
simple individual, or pedigree family-based selection approaches (eg., between, within and 
combined). For disease traits or other traits that require destructive sampling, family-based sib-
selection is more commonly practised. Sib-selection, whilst allowing family average breeding values 
to be calculated, only exploits half of the available additive genetic variance (ie., exploits the 
between family variance), which limits genetic gains, and can also lead to increased inbreeding as 
not all families are selected to contribute to the next generation stocks. 

In aquaculture, GS has been theoretically shown to simultaneously increase genetic gains, while 
decreasing inbreeding by up to 81% when compared with traditional selection programs (Sonesson 
and Meuwissen 2009). Although, the monetary value of individual animals of most aquaculture 
species is generally low (eg., compared to livestock), they are highly fecund and have a relatively 
short generation interval. This not only provides the ability for varied selective breeding strategies, 
but also for generating the thousands of phenotypic records required for accurate GS predictions. 
Furthermore, with a limited number of discrete broodstock capable of producing offspring for the 
entire production system, the farm effective population size is relatively small. This characteristic 
enables GS to be implemented on a family-based, or farm-wide basis, utilising a lower density of 
genome-wide loci compared to outbred populations (see genomic information section below). In 
aquaculture, GS improvement programs can have a rapid impact on genetic improvement 
particularly through the use of a structured nucleus breeding scheme. As with traditional selective 
breeding programs, the potential of GS will vary across different species depending on differences 
in life cycle, fecundity, effective population size and breeding objectives. 

To date the successful application of GS in aquaculture has been limited to a handful of research 
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projects. For example, sea lice resistance in Atlantic salmon (Tsai et al. 2016), bacterial cold-water 
disease resistance in rainbow trout (Vallejo et al. 2017) pasteurellosis resistance in gilthead sea 
bream (Palaiokostas et al. 2016) and shell size in scallops (Dou et al. 2016). For commercial 
aquaculture applications of GS, there is limited public information available, and progress is 
reported here on optimisation and implementation within the authors own programs. Here, GS is 
being directly integrated into shrimp breeding programs for multiple production traits (eg., size, 
disease resistance, colour, survival, Khatkar et al. 2017a these proceedings), as well as pearl oyster 
breeding programs for both host oyster and donor oyster traits (eg., shell size and pearl quality traits, 
Jones et al. 2017 these proceedings). Within these programs, the feasibility of successfully applying 
GS has relied on the availability of high-quality genomic resources, comprehensive information on 
genetic parameters for all traits and extensive trait phenotype records in the reference population. 
 
COST-EFFECTIVE GENOMIC INFORMATION 

In aquaculture breeding, the number of individuals to genotype can be large (particularly for 
traits with low heritability). Apart from optimising the number of training or selection candidates 
for routine genotyping (ie., based on GS modelling and farm breeding scheme, eg., Sonesson and 
Meuwissen 2009), reducing the cost or number of genome-wide markers is a viable solution. Our 
own data show that derivation of genomic relationships can be achieved with relatively low-density 
SNP panels (Figure 1; 1,000-3,000 SNPs;) compared to those derived from medium-to high density 
SNP panels (eg., 50,000+ SNPs; see also Ødegård et al. 2014). However, such accuracies deteriorate 
rapidly if very low-density SNP panels are used (<1,000 SNPs). 

 

  
Figure 1. Comparison of SNP based kinship estimates (rG) computed using two independent 
sets of (a) 100 SNPs and (b) 3,000 SNPs, calculated on 393 shrimp samples 
 

To our knowledge, there are only a handful of aquaculture species that have commercially 
available SNP genotyping arrays available (ie., Affymetrix Axiom Salmon genotyping array, 
Affymetrix Axiom Trout genotyping array and Illumina Infinium ShrimpLD-24 genotyping array). 
The lack of commercially available genotyping SNP arrays for aquaculture adds significant 
additional cost to GS genotyping, as these resources need to be first development and tested. 
However, the recent development of high-throughput and cost-effective genotyping by sequencing 
(GBS) technologies has significantly reduced both the cost of developing and genotyping SNPs for 
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non-model species (eg., Lind et al. 2017). As such, GBS is rapidly becoming the methodology of 
choice for aquaculture species (Robledo et al. 2017). Compared to SNP array based genotyping 
platforms, GBS requires significantly more quality control (QC) measures to ensure robust genotype 
data is produced. This is primarily a result of the molecular technique itself, which can introduce 
spurious and missing data when proper control and data filtering methods are not put in place. 
Aquaculture species can be particularly sensitive to these anomalies given their sometimes highly 
polymorphic and repetitive genome structures, a problem particularly observed for crustaceans and 
oysters (eg., Yu et al. 2015; Lal et al. 2016). 

Another method to reduce the cost of genotyping is through imputation of genotypes, where most 
of the animals can be genotyped with a low-cost, low-density SNP panel. The genotypes of these 
animals can be imputed up to high-density by using information on a smaller number of reference 
individuals (typically broodstock) genotyped with a larger high-density SNP panel that also captures 
the same SNP as represented on smaller arrays. Such imputed in-silico genotypes can then be used 
for GS and other genomic analyses. Such strategies have been shown to improve the accuracy of GS 
in livestock (Khatkar et al. 2012) and aquaculture species (Tsai et al. 2017).  

The number of individuals in the reference panel and number of markers in the low-density panel 
depends on the effective population size of the breeding stock and relationship between reference 
and test populations. A small effective population size, as present in many aquaculture stocks, will 
require smaller number of animals in the reference panel and can be imputed with high accuracy 
with smaller number of SNPs in the low density panel. Moreover, if all the contributing broodstock 
are genotyped with the high-density panel, the accuracy of imputation in the progeny, genotyped 
with even smaller SNP panel, could be quite high using a pedigree based imputation approach 
(Hickey et al. 2012). However, accurate imputation requires knowledge about the precise location 
of SNPs across the genome. For most aquaculture species genetic linkage maps and / or genome 
assemblies are in the early stages of development (Abdelrahman et al. 2017). 
 
NEXT-GENERATION PHENOTYPING 

Accurate phenotypes on commercially important traits are critical for any breeding program. 
This becomes especially challenging in aquaculture where large numbers of animals need to be 
recorded. Any error in the trait recording will reduce effective estimated heritability and hence 
realised genetic gain. High-throughput and precise phenotyping strategies are required to supply the 
large amount of trait data required for commercial scale GS applications. Within this framework, 
the objective is to increase the accuracy, precision and throughput of phenotypic assessment while 
reducing costs and minimising labour in an intensive production system. Today, phenotyping is 
quickly emerging as the major operational bottleneck limiting the power and speed of commercial 
GS programs (eg., Cobb et al. 2013). This problem is compounded in aquaculture where fecundity, 
progeny numbers from breeding pairs and variable survival rates create circumstances where 
individual phenotypes and traceability are nearly impossible to obtain without new methodologies. 
Furthermore, aquaculture does not have the benefit of standardised global phenotyping programs 
such as in livestock (eg., dairy cattle). Designing effective on-farm phenotyping strategies requires 
integrated solutions incorporating biologists, computer scientists, statisticians and engineers.  

More recently, automation, imaging and software developments have paved the way for many 
quantitative phenotyping studies. Within these developments, digital imaging has emerged as a 
cornerstone to capturing quantitative phenotypic information. Visual imaging has already allowed 
many production traits to be measured efficiently and accurately across different production 
industries including aquaculture (Cobb et al. 2013; Saberioon et al. 2016). For example, fish length 
has been estimated in Rainbow trout (Miranda and Romero 2017) and fish mass in Jade Perch 
(Viazzi et al. 2015) with very low residual errors using automated computer vision techniques. 
Furthermore, fish skin colour and pearl quality traits (eg., colour, lustre, completion), which 
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traditionally are recorded as categorical traits, can now be recorded as highly-reliable continuous 
quantitative traits based on UV-Vis spectrophotometry (eg., Kustrin and Morton 2015), which 
ultimately will improve GS predictions. Other emerging aquaculture phenotyping techniques are 
Near Infra Red (NIR) spectroscopy and Hyperspectral imaging (HIS) which combines spectroscopy 
with imaging technology. These techniques are able to quantify and evaluate the chemical (eg., fat, 
protein, moisture) and physical (eg., freshness, texture, colour) attributes of aquatic animals with 
relatively high accuracies of prediction (r > 0.8, see Liu et al. 2013; Saberioon et al. 2016). All of 
these machine vision systems (MVS) are able to extract and analyse quantitative information from 
digital images and have the ability to improve the accuracy of the phenotype by electronically 
analysing the data at a pixel level across spectral regions not always visible to the human eye. 

MVS usually consists of two components, the image acquisition system hardware (ie., UV-Vis, 
NIR and HIS) and data extraction system software. The latter typically incorporates computer based 
processing and optimised statistical methods and algorithms specific for the trait of interest, which 
is often the limiting factor in applying MVS. The development of advanced image analysis software 
including artificial neural network (ANN) algorithms based on machine learning approaches has 
been an important step forward in the development of analysis systems for automated MVS 
phenotyping (eg., Grys et al. 2016). 

 

 
 

Figure 2. (a) Oyster net image depicts one of the most difficult tested situations. (b) Oysters 
and net have low contrast from the background and lighting is variable. (c) Sliding windows 
CNNs correctly identified and measured oysters with >93% accuracy 
 

Within our own research programs (ie., for marine shrimp and pearl oyster), machine learning 
algorithms have allowed precise inexpensive phenotyping across diverse production traits. For 
example, MVS systems have been used for pearl oyster growth data as well as pearl quality traits 
(eg., colour, size, lustre, completion). Although still in development, sliding window algorithms and 
Convolutional Neural Network (CNN) with rule-association based clustering yielded high accuracy 
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(exceeding 93%) in Object Character Recognition (OCR) for the oysters in nets within the full 
spectrum of commercial situations (Figure 2; P. Toole unpub. data). By definition, CNN learning 
algorithms get more precise when presented with more data. This supervised learning approach has 
been undertaken with developing methodologies on how to automate the entry of commercial data 
into a noSQL or graph-based database. 
 
IMPLEMENTING GENOMIC SELECTION ON FARM – LESSONS LEARNT 

Greatest immediate value from genomic selection is realised where genomic breeding values can 
be targeted against traits that drive economic returns to commercial farmers. Typically such traits 
are based on yields of harvested product. Although this sounds straightforward enough, practical 
limitations become immediately apparent in situations where traits under commercial grow-out 
conditions vary substantially from performance recording environments in often pathogen-free 
central nucleus breeding facilities (as used in specific pathogen free shrimp breeding programs for 
instance). For most aquaculture systems the Genotype by Environment (GxE) interactions are 
largely unknown and limit the value of GS training data if the genetic correlation between the central 
nucleus breeding values and on-farm breeding values is significantly less than unity (ie., < 0.6). 
Fortunately, genomic selection platforms allow for field data to be linked to nucleus broodstock 
through DNA derived genomic relationships and on-farm phenotyping. Secondly, genomic selection 
programs become increasingly more complex when harvest yields are determined by diverse 
genomes, as is the case of pearl oyster, with a host recipient seeded with the saibo of a donor. The 
need to have accurate breeding values for both host and donor oyster may eventually result in the 
need of separate breeding lines for both. Unknown interactions between host and donor further 
complicate the application of genomic selection if such epistatic effects are significantly greater than 
zero. In the case of pearl oyster the multi-factorial nature of pearl value adds to the complexity of 
setting up multi-trait genomic selection. Thirdly, and potentially of greatest commercial appeal for 
genomic selection is to build disease resistance into the genetic improvement program as has been 
highlighted above. Most central nucleus breeding programs are pathogen free and breeding decisions 
are based on family sib-selection, but commercial grow out environments are under constant disease 
challenge. It is unlikely that simply screening commercial stocks will yield data of sufficient quality 
to obtain genomic breeding values for disease resistance, since most disease field challenges are 
uncontrolled, and often resistance to multiple pathogens is of interest. One potential solution is to 
expose large mixed-family progeny cohorts to standardised disease challenge and ascertain survival 
statistics from pooled genotype data pre- and post-challenge. Finally, it is almost certain that for 
most genomic selection programs, there will be a need for ongoing phenotyping to update the 
training sets, and cross validate data collected under diverse commercial environments and to 
monitor unfavourable genetic correlated responses. 

Perhaps one of the greatest advantages offered by application of genomic selection over 
conventional breeding programs, is that large-scale multi-family data can be resolved retrospectively 
through genomic relationships. This has two immediate and highly significant advantages. Firstly, 
the predicted genetic response and realised inbreeding are far superior over the management of 
multiple single-family lines. Simple simulation shows that a cohort of 100 families in a single line 
outperforms the average of 100 single-family lines and creates long-term sustainable value for the 
industry (Khatkar et al. 2017b, these proceeding). Secondly, the enormous costs in establishing and 
maintaining single-family mating, spawning and rearing facilities are not required under a genomic 
selection program using a large scale multi-family breeding program. In many cases the commercial 
infrastructure for propagation is sufficient, and the cost saving outweighs the cost incurred for 
genotyping. 

In our experience, the transition from existing/traditional selection programs into a genomic 
selection program is challenging since most mating and infrastructure designs in central nucleus 
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breeding facilities do not capture the advantages offered by genomic selection programs. In the case 
where simple mass produced commercial stocks are produced, or where no genetic improvement 
programs are in place, imposing a genomic selection program is potentially straightforward. The 
main requirement is that the species is domesticated, since lifecycles need to be closed for ongoing 
selection and capture of genetic gain. Where source broodstock has been harvested from wild stock, 
the base generation needs to be adequately represented in the foundation stocks, and inclusion of 
“new” ongoing sampling of wild stocks limited. Once an adequate training data set against 
commercially well-defined breeding objectives has been completed, a robust test-set and validation 
phase is required to determine the accuracy of the genomic predictions. For easy to measure traits 
of moderate to high heritability, this is relatively easy to achieve; however, for most, if not all 
diseases, and complex multi-factorial traits, the development of adequate training data sets will 
remain a logistical challenge. Of practical concern is also how best to use available information. For 
most applications, genotyping potential candidates under selection remains a significant cost. The 
use of multi-stage selection, based on simple phenotypic selection as a primary selection, followed 
by genomic sampling (DNA sampling genotyping and tracking tagged individuals) and selection is 
likely the most cost-effective application of this technology (Khatkar et al. 2017b these proceeding). 
Other applications of genomic selection include the genomic management to minimize inbreeding 
by candidate selection and mate allocation to maximize genomic diversity. Genomic selection also 
offers an additional commercial benefit, to pre-screen females and males in the current generation 
for production of commercial animals, given that relatively few females are needed to generate the 
many millions of larvae for commercial production. The exact benefits of GS breeding programs 
will be dependent on the species and nature of the aquaculture enterprise. 
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