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SUMMARY 

Estimates of genomic relatedness derived from either SNP chip (two different densities) or 
genotyping-by-sequencing (GBS) resources were compared in a group of 95 sheep. The estimates 
were highly correlated (r = 0.983-0.992 for relatedness between individuals) although GBS 
estimates were slightly higher than chip-based estimates. These results provide evidence that GBS 
is a useful technique for genomic studies. 

 
INTRODUCTION 

Genomic information is increasingly being used in animal breeding. Many livestock industries 
have SNP chips available at a range of densities and at a cost where they are being used in breeding 
programmes. The SNP chip results are used either directly or indirectly, often after imputation to a 
higher density, to estimate genomic relatedness between animals in breeding programmes. An 
alternative technology is to use genotyping-by-sequencing (GBS), based on sequencing a fraction 
of the genome, possibly at low depth (to reduce costs). GBS can be applied in species without 
extensive genomic resources (such as SNP chips and reference genome assemblies). Methods have 
been developed to estimate relatedness using GBS results (Dodds et al. 2015). Here we compare 
relatedness estimates in a sub-flock of 95 sheep genotyped using both genotyping technologies. 

 
MATERIALS AND METHODS 
Animals. A group of sheep that had previously been genotyped using SNP chips were chosen for 
GBS genotyping to allow a comparison of methods. This group were a set of 89 male and female 
progeny from a single cohort (born in 2014), 5 of their sires and a control sample; 80 of the progeny 
had their sire in these data. Two of the sires were Primera, two were predominantly Texel, and the 
other was predominantly Texel x Coopworth. The control animal was a Texel x Coopworth. The 
dams were unrecorded, but were a maternal type (predominantly Romney). 
SNP chip genotypes. The set of animals had been previously genotyped. All animals except for 12 
of the progeny had been genotyped with the Illumina ovine HD beadchip (Kijas et al. 2014). 
Although this chip assays over 600,000 SNPs, only 41,020 of those SNPs (referred to as 41k) are 
used here, being those that are also on the Illumina ovine SNP50 beadchip and which passed quality 
control (including being autosomal) on both chips using the criteria in Auvray et al. (2014). All 
progeny had been genotyped with a custom Illumina BovineLDplusovine SNP chip which assays 
5283 ovine SNPs; this study used 4015 (referred to as 4k) of those SNPs, being those that were also 
on both the HD beadchip and the SNP50 beadchip, and which passed quality control. For some 
animals, genotypes for these SNPs from a higher density chip were used as the 4k genotypes. 
GBS genotypes. The animals were genotyped by GBS using the methods described by Dodds et al. 
(2015) and based on the GBS protocol of Elshire et al. (2011). Briefly, DNA samples and a negative 
control were digested with PstI; a different barcode adaptor was added to each sample, along with a 
common adapter. Samples were then combined and fragments in the range 150-500bp were selected 
and single-end sequenced on one lane of an Illumina HiSeq2500 resulting in approximately 2 million 
reads per sample. The resulting sequence reads were adapter-trimmed and then UNEAK (Lu et al. 
2013) was used to detect variants (without the use of a reference genome) and report allele counts 
for each variant and sample. 
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Estimation of relatedness. Relatedness between each pair of individuals, and self-relatedness for 
each individual were estimated by the methods of Dodds et al. (2015) which accounts for the read 
depth in a genotype call. This included estimation from SNP chip genotypes, where the depth was 
taken to be infinite. This is then equivalent to the first method of vanRaden (2008), except that only 
SNPs with data for the individual or pair of individuals involved are used for that estimate (i.e., 
missing genotypes are not imputed). The allele frequencies used were taken as the sample allele 
frequencies using allele counts. For chip data the allele counts were the usual counts (e.g. AA has 2 
A alleles). All SNPs reported by UNEAK were used for the GBS-based analysis. Methods are 
compared by correlation and by regressions of the differences on the means (Altman and Bland 
1983) for each pair of methods. Standard errors for the regressions using pairs of individuals were 
calculated using the number of individuals rather than the number of pairs as an approximate method 
to account for the non-independence of the pairs. 

 
RESULTS AND DISCUSSION 

The GBS process resulted in calls for 68,293 SNPs with a mean read depth of 6.1. The 41k SNPs 
had 407 with a minor allele frequencies (MAF) of 0 in these data, and these were removed before 
further analysis. Summary statistics are shown in Table 1; for GBS, having at least one read at a 
SNP is taken as a call. Call rates were high for the chip data, but lower for GBS due to the 
randomness of the sequence reads. The MAFs were highest for the 4k chip, where SNPs were highly 
selected to be informative, and lowest for GBS where SNPs were not pre-selected. 
 
Table 1. Summary statistics for the different genotyping methods 
 

Marker set Number of 
SNPs used 

Mean call 
rate 

Mean minor 
allele frequency 

Mean inbreeding 
estimate 

Mean 
relatedness 

41k chip 40,613 99.96% 0.289 -0.037 -0.012 
4k chip 4,014 99.37% 0.367 -0.035 -0.010 
GBS 68,293 86.73% 0.225 0.058 -0.003 

 
Table 2. Summary statistics for relatedness comparisons including correlations of the 
estimates and regressions of the differences (first marker type minus second marker type) on 
the means 
 
Marker 
comparison 

Relatedness Number 
compared 

Correlation 
(r) 

Mean difference 
(SE) 

Slope (SE) 

41k – 4k Self 83 0.844 -0.002 (0.002) 0.093 (0.065) 
41k – GBS Self 83 0.769 -0.095 (0.003)*** 0.060 (0.080) 
4k – GBS Self 95 0.662 -0.094 (0.003)*** -0.068 (0.093) 
41k – 4k Between 3403 0.992 -0.001 (0.002) -0.012 (0.014) 
41k – GBS Between 3403 0.989 -0.008 (0.002)*** -0.055 (0.016)** 
4k – GBS Between 4465 0.983 -0.007 (0.002)** -0.047 (0.019)* 

* P<0.05, ** P<0.01, *** P<0.001 
 

Comparisons of relatedness estimates are shown in Figure 1 and Tables 1 and 2. In general, the 
estimates appear to be quite similar across methods. GBS produced higher (P<0.001) inbreeding 
estimates and they were less consistent with the chip estimates than the two chip results were with 
each other. The breeding design for the progeny set tends to involve breed crosses, so we would 
expect inbreeding to be low (with low variation) in the flock. The differences in inbreeding between 
GBS and chips appeared to be uniform over the observed range; the regression slopes for the 
differences were not significant. One possible reason for GBS giving higher inbreeding estimates is 
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that the SNPs have not been pre-selected, and in particular are likely to include non-autosomal SNPs. 
This could elevate the results for males, as they would appear homozygous for X-linked and Y 
chromosome markers. The inbreeding in the male progeny was higher than in the females, but by 
only a small amount (0.005, SE = 0.006, NS). These regions would be expected to have around half 
the average read depth (in males) and the method of estimating inbreeding adjusts for un-observed 
heterozygosity with low depth (assuming autosomal markers), which would dampen any increase in 
estimated inbreeding due to these regions. 

 

 
Figure 1. Comparison of relatedness estimates using different genotyping methods. Plots below 
the diagonal are for self-relatedness of individuals and those above the diagonal are for 
relatedness between all pairs of individuals. Diagonal labels show the method for the 
horizontal axis in that column and vertical axis in that row. Lines of equality are also drawn 

 
The relatedness values were all highly correlated (Figure 1, Table 2). Once again, GBS produced 

higher (P<0.01) values overall, but only by a small amount (0.007 or 0.008 on average). There was 
also a significant (P<0.05) slope for these two comparisons, meaning that there was a larger 
difference between GBS-based estimates and chip-based estimates for higher values of relatedness. 
The relatedness estimates form three main groups. The group with higher values are mainly sire-
progeny pairs, but there are also pairs from within the progeny group, presumably full-sibs. The 
middle group contains a pair of sires, while all other pairs are within the progeny group, presumably 
half-sibs. 
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The relatedness estimates average close to zero, a by-product of estimating allele frequencies 
within the dataset, rather than having ancestral frequencies (Yang et al. 2010). As GBS SNPs were 
not pre-selected, and the methods gave similar estimates, it suggests that there is not a large 
ascertainment bias on the chips, in terms of estimating relatedness. It is also interesting to note that 
the estimates appear to be similarly correlated for low values compared to high values of relatedness. 
This suggests that the rankings of relatedness when the estimates are negative are still meaningful 
(pairs with more negative values are less related than pairs with negative values close to zero). 

One of the main reasons for estimating relatedness in agricultural species is to allow genomic 
selection, for example these estimates can be used directly in a GBLUP model. Having the 
relatedness estimates for the three methods correlate well suggests that they would perform similarly 
for genomic prediction, but further work is needed to verify this. For example, it is generally 
accepted that at least 10,000 SNPs are needed for genomic prediction, suggesting that the high 
correlation (0.992) between the 4k and 41k sets seen here may not be enough to guarantee 
satisfactory predictions from the 4k set. If GBS is to be adopted in resources were many individuals 
have been genotyped with SNP chips, there will need to be an investigation on how to combine 
relatedness estimates from different methods as has been required for combining pedigree and 
genomic-based relatedness (Aguilar et al. 2010). 

We have shown that there is good agreement between relatedness estimates from GBS and from 
SNP chips, especially in terms of their correlation. There were some small differences in the mean 
levels of relatedness, so that adjustments would be required if combining data using different 
methods. It would be useful if this comparison could be extended to genomic relatedness estimation 
across divergent breeds and also to examine different GBS protocols, i.e. different enzymes, to check 
the robustness of these results. In summary, GBS is a promising method for genomic analyses using 
relatedness estimates and can be rapidly deployed, even for species with poor genomic resources. 
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