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SUMMARY 
The aim of this study was to compare different ways of accounting for population structure for 

genomic prediction of three economic traits in an Australian Merino sheep population. Population 
structure was accounted for either by fitting genetic groups (GG) derived from pedigree, or fitting 
principal components (PCs) calculated from the genomic relationship matrix based on 50k density 
SNP marker genotypes. Genomic breeding values (GBV) were calculated using genomic best linear 
unbiased prediction (GBLUP) and the GBV accuracy was evaluated based on 5 fold cross-validation 
across half-sib families. Best linear unbiased estimation (BLUE) of GG or PC effects were added to 
the GBV. Results showed that accounting for population structure either by fitting GG or PCs 
improved the accuracy of genomic prediction. Furthermore, fitting the first two PCs gave a similar 
accuracy to fitting GG derived from pedigree. The improvement in GBV accuracy after accounting 
for population structure in studied traits was not high (3.8% when averaged across traits) which may 
be because the genomic relationship matrix will implicitly account for some of the population 
structure effect when the GG or PCs are not fitted in analysis. In the case of missing or incomplete 
pedigrees, PCs can be used to account for population structure and to improve the prediction 
accuracies. 

 
INTRODUCTION 

Differences in average genetic effects of breeds or strains within breeds (population structure) 
may affect the accuracy of genetic merit evaluation of selection candidates. Population structure 
could bias the genomic estimated breeding values (GBV) and hence affect the realized selection 
response. Australian Merino sheep is a highly diverse population due to different breeding objectives 
within the various types of Merino, and due to different production environments. The Merino breed 
consists of many sub-populations according to wool quality, e.g. strong wool, fine wool and ultra-
fine wool Merinos. Accounting for population structure is a very importance feature of 
MERINOSELECT which is the national genetic evaluation of Australian Merino sheep (Brown et 
al. 2015; Swan et al. 2014) 

The effect of population structure can be accounted for in the estimation of breeding values 
(based on phenotype and pedigree), according to genetic groups derived from pedigrees. However, 
in the case of incomplete pedigree information, population structure can be derived from genotypes 
by using Principal Components (PCs) from the genomic relationships matrix (GRM) (Price et al. 
2006). Fitting PCs explicitly in the model is likely more accurate than accounting for the structure 
implicitly through the GRM (Van der Werf et al. 2013). The aim of this study was to compare fitting 
genetic groups based on pedigree with fitting PCs based on the genomic relationship matrix when 
accounting for population structure in genomic prediction of Australian Merino sheep.  

 
MATERIALS AND METHODS 

Reference population, phenotypes and validation population. The traits studied were post 
weaning weight (PWW, 6,388 records), ultrasound scanned eye muscle depth (PEMD, 4,012 
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records) measured between 150 and 290 days from birth and yearling greasy fleece weight (YGFW, 
5,200 records) on Merino sheep. Animals originated from the “Sheep Cooperative Research Centre 
Information Nucleus Flock“ (INF) and the Resource Flock (RF) which consisted of eight sites 
located across different regions of Australia and these were linked to each other by using common 
sires through artificial insemination between 2007 and 2015. More information on the scope and 
design of the INF is provided by Van der Werf et al. (2010). The accuracy of genomic prediction 
was evaluated based on the average of 5-fold cross-validation, where whole half sib families were 
sampled such that half sibs could not appear in training as well as validation set. The accuracy was 
calculated as the correlation between the GBV and the corrected phenotype, divided by the square 
root of the trait heritability. 

Genotypes. Genotypes were available based on real 50K Ovine marker panel (Illumina Inc., San 
Diego, CA, USA) or 12K which was imputed to 50K. The 50K and 12K marker panel provided 
respectively 48,559 and 12,646 SNP genotypes after applying quality control. The sporadic missing 
genotypes were imputed first using Beagle 3.0 (Browning 2009). Animals genotyped with 12K 
marker density then were imputed to 50K density using Beagle 3.0 and using all Merino animals 
genotyped with 50K marker density as reference set. Accuracy of imputation was shown to be high 
(on average 0.96). 

Statistical methods. Genomic best linear unbiased prediction (GBLUP) was used to calculate 
the Genomic Breeding Values (GBV) using the ASReml (Gilmour et al. 2009) program. The model 
fitted for each trait was: y = Xb + Z1g +  Z2m + e where y is a vector of phenotypes, b is a vector 
with fixed effects, g is the random additive genetic effect of the animal, m is a vector with maternal 
effects and e is vector of random residual effects, X, Z1 and Z2 are incidence matrices relating effects 
to animals. The parameters g, m and e are considered normally distributed as: 𝑔𝑔 ~ 𝑁𝑁(0,𝐺𝐺𝐺𝐺𝑔𝑔2), 
𝑚𝑚 ~ 𝑁𝑁(0, 𝐼𝐼𝐼𝐼𝑚𝑚2 ) and 𝑒𝑒 ~𝑁𝑁(0, 𝐼𝐼𝐼𝐼𝑒𝑒2), respectively and G was the genomic relationship matrix 
calculated based on 50k markers genotypes using the VanRaden (2008) method. The common fixed 
effects in all models were birth type, rearing type, gender, age at measurement and contemporary 
group which was flock × birth year × management group. In the GG models 5 genetic groups were 
fitted as a regression (fixed continuous variable) on proportion of Merino sub-population (strains) 
where the proportions for individual animals were derived from a deep pedigree. In the PC models 
principal components were fitted by regression on up to ten eigenvectors associated with the largest 
10 principal components.  
 
RESULTS AND DISCUSSION 

Tables 1, 2 and 3 compare the accuracy of genomic prediction between different models of fitting 
GG or PCs to account for population structure for PWW, PEMD and YGFW, respectively. Results 
show higher prediction accuracy for three different traits studied when population structure was 
accounted for in the model and then solutions for GG or PCs’ effects were added to the GBV. This 
result was in line with a previous study by Daetwyler et al. (2013) who showed higher genomic 
prediction accuracy within Australian sheep breeds by accounting for population structure using 
PCs. However, the improvement in accuracy compared to only fitting the GRM in this study was 
not very high and on average 3.4% in absolute value.  

Results showed fitting the first two largest PCs resulted in similar prediction accuracy to fitting 
GG from pedigree. Brown et al. (2015) and Swan et al. (2014) also showed strong correlation 
between using GG derived from pedigree and PCs calculated from genomic relationship matrix to 
correct the impact of population structure on estimation of genetic merits of animals. In this study 
the accuracy of GBV (GG/PC effect inclusive) was not increased by fitting more PCs. Results also 
showed a continuous decrease in GBV accuracy if the GG or PC effect solution was not added to 
GBV (Tables 1-3). 
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Table 1. Variance components, (SE) and average accuracy of genomic predictions from 5 
fold cross-validation for PWW based on fitting genetic groups (GG) or Principal 
Components (PCs) 
 

Model Ve1 Va2 Vdam3 r(GBV1,Res)4 r(GBV2,Res+GG) 5 

No GG 13.83 (0.73) 12.05 (0.91) 2.08 (0.61) NA 0.348  
GG 14.61 (0.74) 10.22 (0.89) 2.28 (0.61) 0.243 0.368 
1PC 14.24 (0.73) 10.98 (0.90) 2.23 (0.61) 0.218 0.342 
2PC 14.41(0.73) 10.55 (0.89) 2.30 (0.61) 0.215 0.355 
3PC 14.96 (0.74) 9.33 (0.88) 2.44 (0.61) 0.194 0.322 
4PC 14.94 (0.74) 9.36 (0.88) 2.43 (0.61) 0.194 0.322 
5PC 14.93 (0.74) 9.40 (0.88) 2.43 (0.61) 0.191 0.322 

10PC 14.99 (0.74) 9.24 (0.88) 2.45 (0.61) 0.178 0.316 
1Residual variance, 2Additive genetic variance, 3Dam permanent environmental effect, 4Average of correlation between 
GBV (corrected for GG or PC effects) and corrected phenotypes (adjusted for GG effects). 5Average of correlation between 
GBV (plus solution for GG or PCs) and corrected phenotypes (not adjusted for GG effect).  
 
 
Table 2. Variance components, (SE) and accuracy of genomic prediction for PEMD based on 
fitting genetic groups (GG) or Principal Components (PCs) 
 

Model Ve1 Va2 r(GBV1,Res)3 r(GBV2,Res+GG) 4 
GG not fitted 5.066 (0.22) 2.251 (0.25) NA 0.384 

GG fitted 5.398 (0.23) 1.728 (0.25) 0.348 0.420 
1PC 5.146 (0.22) 2.121 (0.25) 0.341 0.412 
2PCs 5.237 (0.22) 1.976 (0.25) 0.320 0.422 
3PCs 5.504 (0.22) 1.565 (0.25) 0.317 0.394 
4PCs 5.496 (0.23) 1.552 (0.25) 0.316 0.393 
5PCs 5.510 (0.23) 1.550 (0.25) 0.316 0.393 

10PCs 5.524 (0.23) 1.550 (0.25) 0.311 0.387 
1Residual variance, 2Additive genetic variance, 3Average of correlation between GBV (corrected for GG or PC effects) and 
corrected phenotypes (adjusted for GG effects). 4Average of correlation between GBV (plus solution for GG or PCs) and 
corrected phenotypes (not adjusted for GG effect).  

 
Tables 1, 2 and 3 also show the additive genetic, residual and dam variance (for PWW and 

YGFW only) for different models. Results show a continuous decrease in additive genetic variance 
and an increase in residual variance by fitting GG or fitting 1 to 10 PCs. The change in dam effect 
was very small in PWW and YGFW. 

Results of this study showed that accounting for population structure according to pedigree or 
genomic information improves the total genetic merit prediction accuracy. However, the increase in 
prediction accuracy in traits studied was not very high compared to fitting only the GRM. This 
indicate that it is likely that the GRM could account for only part of the effect of population structure 
implicitly as was indicated before (Van der Werf et al. 2013).  
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The reason for lower accuracy of GBVs (corrected for PCs) by fitting more PCs would be 
because fitting more PCs can capture part of the total additive genetic variance between different 
flocks and between half-sib families within flocks. 

In term of estimating the total genetic merits for animals with pedigree information the results 
show the GG model seems to work slightly better than PCs model. However, fitting the first two 
largest PCs derived from the GRM can also sufficiently account for population structure. This shows 
that in the case of missing, incomplete or not reliable pedigree information and if the animals were 
genotyped, PCs could be used to account for population structure to obtain higher prediction 
accuracies within a breed. This could be more important in prediction of unbiased breeding values 
on the national scale such as Australian Sheep Breeding values (ASBV) with probable larger impact 
of genetic groups. 

Table 3. Variance component, (SE) and accuracy of genomic prediction for YGFW based on 
fitting genetic groups (GG) or Principal Components (PCs) 
 

Model Ve1 Va2 V(dam)3 r(GBV1,Res)4 r(GBV2,Res+GG) 5 
GG not fitted 0.160 (0.01) 0.128 (0.01) 0.016 (0.01) NA 0.564 

GG fitted 0.163 (0.01) 0.121 (0.01) 0.017 (0.01) 0.532 0.611 
1PC 0.153 (0.01) 0.131 (0.01) 0.020 (0.01) 0.524 0.562 
2PCs 0.156 (0.01) 0.127 (0.01) 0.021 (0.01) 0.519 0.604 
3PCs 0.157 (0.01) 0.122 (0.01) 0.021 (0.01) 0.509 0.569 
4PCs 0.161 (0.01) 0.122 (0.01) 0.021 (0.01) 0.509 0.566 
5PCs 0.163 (0.01) 0.121 (0.01) 0.022 (0.01) 0.508 0.566 
10PCs 0.167 (0.01) 0.116 (0.01) 0.021 (0.01) 0.487 0.560 

1Residual variance, 2Additive genetic variance, 3Dam permanent environmental effect, 4Average of correlation between 
GBV (corrected for GG or PC effects) and corrected phenotypes (adjusted for GG effects), 5Average of correlation between 
GBV (plus solution for GG or PCs) and corrected phenotypes (not adjusted for GG effect).  
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