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SUMMARY 
Selective breeding within the pearling industry is heavily confounded by the complexity of 

production traits and the ability to accurately measure these phenotypes. Pearls are produced by 
implanting a nucleus along with a small piece of donor tissue from a sacrificed oyster into a host 
oyster. Unravelling trait architecture for these complex pearl quality traits is integral if genomic 
selection is to be implemented into established selective breeding programs. By combining 
simulated and exploratory datasets, this study uses genome-wide loci to better understand the genetic 
architecture of pearl colour which provides insights into the optimal design and implementation for 
a genomic selection breeding program within the pearling industry.  

 
INTRODUCTION 

The silver-lipped pearl oyster is a globally important aquaculture species with pearl production 
from this species currently the second most valuable Australian aquaculture export (GLOBEFISH 
2016). However, like most aquaculture industries, pearling has yet to establish and implement the 
advanced selective breeding programs required for industry progression. Although traditional 
animal improvement methods have had some success with simple traits (i.e. animal growth), they 
are inefficient for the complex pearl traits (size, colour, lustre and shape), which are polygenic, hard 
to measure and have a low heritability (Jerry et al. 2012, Jones et al. 2014). For the Australian pearl 
industry (and aquaculture in general) to maintain international competitiveness, industry must 
engage in a paradigm shift in breeding practices and implement pioneering technologies that 
circumnavigate current limitations associated with sole reliance on phenotypic selection. 

Successful incorporation of genomic data into traditional selective breeding programs depends 
on many factors including the diversity within a farm, the species genome size and structure, and 
the architecture of traits of interest. Herein, we describe the development of an optimal genomic 
selection approach required for rapid-genetic improvement in pearl colour in pearl oysters. In doing 
so, we propose a breeding system which promises to not only improve efficiency of selection within 
the pearling industry, but will serve as a case study for many aquaculture species.  
 
MATERIALS AND METHODS 
Experimental animals, pearl seeding and phenotypic records. To investigate the ideal design of 
a genomic selection breeding program for pearl colour, we utilised a dataset previously published in 
Jones et al. (2014) as a pilot dataset to explore the parameters required for robust application. 
Briefly, this dataset contains 2,306 individually traced commercial pearl grading phenotypes for 358 
donor oysters from 6 families, as well as genotypic data for 1,146 SNPs across these individuals. 
Herein, we focus on the analysis of pearl colour, categorised into five sub-categories; SW.O.G: silver 
and white vs. gold vs. all remaining colours; G.O: gold vs. remaining colours; S.O: silver vs. 
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remaining colours; W.O: white vs. remaining colours; and finally SW.O: silver and white vs. 
remaining colours (Jones et al. 2014).  

 
Variance components, heritability and genetic parameters. Previous estimates of variance 
components and heritability (h2) for pearl colour have been based on pedigree information. To test 
the premise that genomic relationships are equally useful in calculating unbiased heritabilities (or 
variance explained by SNPs), we generated genomic relationship matrixes (GRMs) across the 358 
oysters using GCTA v1.26.0 (Yang et al. 2011). Variance components and heritabilities were 
calculated using mixed linear models (MLM) whereby all SNPs were fit as random effects. Briefly,  

𝒚𝒚 = Χβ +𝒈𝒈+ ε  with  𝑽𝑽 = 𝑨𝑨σ𝒈𝒈𝟐𝟐 + 𝑰𝑰σε
𝟐𝟐 

where g in an n x 1 vector of the total genetic effects of the individuals with g ~ N(0, 𝑨𝑨σ𝒈𝒈𝟐𝟐), and A 
is interpreted as the GRM between individuals. An estimate of σ𝒈𝒈𝟐𝟐  can then be produced by the 
restricted maximum likelihood (REML) approach, relying on GRM estimates from all SNPs. Co-
variables identified as significant in the previously published heritability estimates (i.e. seeding 
nucleus size and seeding technician) were also included within current the analysis described here. 
In addition to calculating GRMs, individual animal breeding values (best linear unbiased predictors; 
BLUPs) and SNP effects were calculated after incorporating in genomic relationship information. 
Genetic parameters generated using GRM were then compared to previously published pedigree 
derived results (Jones et al. 2014).  

 
Optimal number of markers. To test the minimum number of SNPs necessary to produce robust 
estimates for GRM within the test farm data, we simulated a theoretical dataset to compare the 
potential benefit of including larger numbers of markers within GRM calculations. Firstly, a founder 
population was identified as the last generation of 1,000 historic simulated generations with 430 
animals in each generation (equal to the effective population size of wild oyster populations as per 
Lind et al. 2007). Simulations were conducted for 4,200 SNPs using QMsim (Sargolzaei et al. 2009). 
From the founder population, 20 males and 20 females were used for breeding with each mating 
producing 50 offspring. The effective population size reflects the number of founders within the 
pilot dataset described above (N = 50). Simulations were run for 10 discrete generations with random 
selection of parents from the earlier generation. For positional information, the 4,200 SNPs were 
placed proportionally to the length of the 14 linkage groups of a Pinctada maxima linkage map 
published in Jones et al. (2013). In the last three generations of the simulations, only 2,000 SNPs 
remained polymorphic. The resulting dataset was utilised to run comparisons of GRMs between 
1,000 and 2,000 SNPs.  

 
Optimal number of samples. Power calculations for related vs unrelated individuals based on 
genetic parameters related to pearl quality were conducted to estimate the minimum number of 
samples required to accurately identify additive genetic variance. Using methods described in 
Visscher et al. (2014), we simulated the power, defined as ‘the probability of detecting h2 > 0 for a 
quantitative trait for the given type I error rate and the SNP-heritability assumed in the population’. 
Heritabilities of 0.05 - 0.30 were run to reflect previous estimates of h2 for pearl colour (0.14 - 0.36; 
Jones et al. 2014). The type 1 error rate was set at 0.01 and the variance of the SNP-derived genetic 
relationships was 0.00002 (for unrelated individuals) and 0.025 (for related individuals within this 
study population, obtained from the genetic relatedness between individuals).  

 
RESULTS AND DISCUSSION 
Pearl colour trait heritability and genetic parameters. The average difference between 
heritability estimates of pearl colour using GRM instead of pedigree was minor (average h2 
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difference of 0.02 ± SD 0.02) indicating that the substitution of the relationship matrix provides 
similar power and accuracy to pedigree data when separating variance components and calculating 
heritability (Figure 1). The calculation of animal BLUP values based on the GRM were highly 
correlated to those previously published with r2 values ranging from 0.72 to 0.88 for the different 
colour categories except for S.O where the r2 was 0.46. This lower r2 may be due to the relatively 
low number of silver pearls observed within the data (N = 216).  

 

 
 

Figure 1. Heritability estimates derived from GRM () as compared to pedigree () 
 
The architecture of pearl colour has previously been reported to be polygenic and influenced by 

many genes of small effects (Jerry et al. 2012, Jones et al. 2014). One major region on linkage group 
12 returned 13 significant genetic associations across the different categorisations of pearl colour 
which have SNP effect sizes ranging from 0.11 to 0.26 (Jones et al. 2014). For these SNPs, the SNP 
effects returned in GCTA using GRM were highly correlated to the previously published GWAS 
SNP effects (SW.O.G r2 = 0.97; G.O r2 = 0.96; S.O r2 = 0.94; W.O r2 = 0.98; SW.O r2 = 0.98).  

 
Optimal number of markers. To determine the potential effect of adding more SNPs into GRM 
calculation, we simulated a larger genotypic dataset containing 2,000 SNPs. The r2 correlation 
between 1,000 and 2,000 SNPs was 0.98 indicating that increasing the number of SNPs with similar 
spacing throughout the genome yielded very little improvement to GRM accuracy in this test farm 
data. This indicates that 1,000 genome-wide markers is sufficient to give accurate GRM calculations 
for this closed farm population with limited founders (Ne previously estimated at 60). If however, 
if this is to be applied outside of this closed farm population, increasing the marker density would 
yield substantial benefit. The relative advantage of GBLUP models is at higher marker density and 
low heritability. In Atlantic salmon, GBLUP performed better with upwards of 4,000 SNPs 
(Ødegård et al. 2014).  

 
Optimal number of samples. Simulations of the power to detect the unbiased heritable component 
of a trait from related individuals (variance of SNP-derived genetic relationships of 0.025) at sample 
sizes ranging from 100 – 400 and h2 of 0.05 – 0.30 reveal that 99% power is obtained at 300 samples 
for a h2 of 0.2 (Figure 2). For the pilot dataset with 2,000 phenotypic records (from 358 unique 
related individuals), power to detect the heritable component of a trait is estimated to range from 
0.78 – 1.00 (for h2 of 0.10 – 0.30) indicating that the current number of individuals is sufficient for 
estimating trait heritability. However, if this was to be expanded to unrelated individuals (i.e. 
variance of SNP-derived genetic relationships of 0.00002), 99% power is only reached at 8,000 
samples for h2 > 0.2.  
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Figure 2. Power simulations for varying heritabilities across increasing sample size 
 

CONCLUSIONS  
The re-analysis of the farm test dataset within GCTA using GRM instead of pedigree returned 

comparable heritability, animal BLUP and SNP effects to previously published GWAS results. This 
suggests that the use of GRM alone is as effective as pedigree data within a closed breeding 
population and adds support to the notion that pearl colour is a highly complex polygenic trait. The 
ability to use GRM instead of pedigree to calculate BLUP enables the inclusion of individuals for 
which pedigree information is not known, but more importantly the relationship between relatives 
can be calculated more accurately (Veerkamp et al. 2011). Considering this, it is hypothesised that 
the variance components can be estimated more precisely with GRM. Furthermore, for a genomic 
selection breeding program to be implemented for complex traits such as pearl colour within a closed 
population of pearl oysters, a minimum number of 300-400 farm data records are required to 
estimate the variance explained by the genome-wide SNPs for the range of heritabilities evaluated. 
To extend this to a breeding population with a larger number of founders (N = 300), simulations 
indicate that the minimum number of markers required to achieve an equivalent GRM outcome is 
~3,000 SNPs and that a minimum of 8,000 samples would be required to reliably detect heritable 
components of pearl production traits. Based on these recommendations, the current pearl oyster 
breeding program has collected phenotypic data (i.e. pearl quality and growth traits) and genotypic 
data (a minimum of ~3,500 genome-wide SNPs) from 10,000 farm production animals to achieve 
these outcomes. These data simulations described herein are integral to refining the direction of 
ongoing research into implementing advanced genomic selection into traditional breeding programs.  
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