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SUMMARY 

The problem of the missing heritability hinders our understanding of the relationship between 
genetic markers and complex quantitative traits, in turn limiting informed selection of mates for 
animal breeding purposes. To this end, we have developed epinetr, a software package for R 
designed to facilitate the investigation of the possible contribution of gene interaction networks to 
the missing heritability. 

 
INTRODUCTION 

Since the advent of the genome-wide association study (GWAS) in 2005 (Haines et al. 2005; 
Vissler et al. 2012), thousands of genetic variants have been identified which contribute to complex 
traits in either livestock (Tenghe et. al. 2016) or humans (Li et al. 2016), with an application for 
livestock being a genetically-informed artificial selection for desirable traits. However, a gap 
emerged between current heritability estimates for these traits and the contribution of the identified 
variants: the so-called “missing heritability” problem (Manolio et al. 2009; Zuk et al. 2014). Several 
explanations were put forth to explain this disparity (Manolio et al. 2009; Eichler et al. 2010); among 
these, the effect of epistasis (i.e. gene-gene interaction) on heritability estimates is an explanation 
that has attracted considerable attention (Huang 2012; Zuk et al. 2012; Bloom et al. 2013). 
Simulations are currently the most viable approach to test epistatic models and how they affect our 
estimates of additive genetic variance (Hoban et al. 2012). 

There is thus a need in animal breeding for flexible simulators that can accommodate a wide 
variety of randomly-generated and user-generated epistatic models while still providing parameters 
to control other factors. As an aid to further research on the genetic architecture of epistasis, a need 
also exists for a network-based approach to epistatic modelling in simulators. To this end, we have 
developed epinetr, a package for the statistical environment R, soon to be submitted to CRAN: 
epinetr is a forward-time simulator designed specifically for the study of high-order epistatic 
networks and how they impact estimates of genetic parameters and selection decisions of complex 
quantitative traits. 

This paper first gives an overview of the design decisions behind epinetr, it then discusses the 
epinetr simulator itself, the features and parameters within the simulator and its ability to handle 
complex epistatic networks. 

 
DESIGN CONSIDERATIONS 

The two broad categories of population genetics simulators form a simple dichotomy: simulators 
that work forwards-in-time and those that work backwards-in-time (Hoban et al. 2012). As can be 
inferred from the nomenclature, forwards-in-time (or forward-time) simulators start with a 
population and work forwards to track individuals and pedigrees via selection, recombination and 
mutation across generations; on the other hand, backwards-in-time (or coalescent) simulators work 
backwards to infer genetic histories. Forwards-in-time simulators demand more computational 
resources than backwards-in-time simulators simply due to the level of granularity required (i.e. per-
individual simulation); at present, forwards-in-time simulators include Easypop (Balloux 2001), 
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GenomePop (Carvajal-Rodríguez 2008) and FREGENE (Chadeau-Hyam 2008), none of which 
include mention of epistatic modelling capabilities in the associated literature. Both simuPOP (Peng 
and Kimmel 2005) and quantiNemo (Neuenschwander 2008) are forwards-in-time simulators that 
do allow for statistical epistatic modelling; the same is true for the more recent simulator SELAM 
(Corbett-Detig and Jones 2016). 

Backwards-in-time simulators such as SNPsim (Posada and Wiuf 2003), SIMCOAL2 (Laval and 
Excoffier 2004), GENOME (Liang et al. 2007) and MaCS (Chen et al. 2009) are typically more 
computationally efficient than forwards-in-time simulators, but there is a trade-off: they are not as 
suited to modelling complexity or natural or artificial selection (Hoban et al. 2012). This limits their 
application to the study of epistatic impact on selection for complex traits. 

Existing outside this dichotomy is EpiSIM (Shang 2013), which allows for the simulation of 
simple 2-way interactions. 

The choice was made to build a forward-time simulator, as this allowed for the use of complex 
selection scenarios. As a further consideration, there is evidence to suggest that epistatic networks 
exhibit a small world or scale-free structure (Tyler et al. 2009; Mackay 2014). While this appears to 
be a fruitful avenue to pursue, a more general point emerges: the actual network structure may be 
the key to understanding the underlying mechanics of epistasis, including the relationship between 
genes and phenotypes. For this reason, epinetr includes the ability to both automatically generate 
random and scale-free epistatic networks or alternatively input user-defined epistatic networks that 
can be generated by an external model based on previous knowledge (or a hypothesis) of the 
underlying architecture of a trait. 

In a nutshell, the epinetr package is designed as a tool to investigate potential epistatic sources 
of missing heritability using network models. 

 
PACKAGE FEATURES 

The epinetr package is written for the R statistical software environment, allowing for complex 
analysis to take place in the same environment as the actual simulation. It includes a set of classes 
that enable users to perform common operations both before and after the simulation with simple 
commands, as well as provisions for specifying a large set of population parameters. 

Typically, there are 5 broad steps in the workflow: 
1. Define population parameters and construct the initial population 
2. Attach additive effects to the population 
3. Attach an epistatic network to the population and visualise the network 
4. Run a forward-time simulation of the population and plot the simulation run 

Parameters are specified using a simple parameter file. Below we give an overview of the 
parameter options available. 

Population size, given at initialisation, is fixed throughout the simulation run. However, because 
litter size is specified by a user-defined probability mass function, some generations may be smaller 
than the fixed population size. For this reason, another pair of parameters controlling the maximum 
lifespans of sires and dams may be violated. 

Allele frequencies can be inferred from a haplotype file or specified directly, thus allowing for 
“sideways simulation” (by first using a coalescent simulator to arrive at the allele frequencies); 
alternatively, haplotypes can be used directly as the initial population. 

Both broad- and narrow-sense heritability can be specified, controlling the contributions of 
additive, epistatic and environmental effects to the overall variance of the trait being studied. 

Selection is performed either randomly or via linear ranking; the mutation rate is a single number 
while recombination probabilities can be optionally specified, thus allowing for the simulation of 
hotspots. Separate truncation rates for sires and dams can also be specified, as can an initial burn-in 
period of random selection. 
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A chromosomal map for the single nucleotide polymorphisms (SNP) is required, with the user 
determining which SNP are used for quantitative trait loci (QTL) in the epistatic network; 
alternatively, the user can specify the number of QTL which are then selected from the SNP at 
random. 

The number of times a sire can mate during a single generation can be specified. 
Once a population is generated using the above parameters, additive effects across all SNP can 

then be attached. Effect sizes (i.e. the absolute value of the coefficients) are determined by the 
restrictions of the population parameters; however, they can be sampled from any distribution 
specified by the user, including user-defined functions. 

Epistatic modelling. By specifying an incidence matrix (with each row representing a QTL and 
each column representing an interaction between QTL), the user can determine the structure of the 
epistatic network; alternatively, the system can generate a random or scale-free network for the 
population with a single command. In either case, the orders of interaction included in the network 
are specified by the user and limited only by the number of QTL in the population; in addition, scale-
free networks can be given a minimum number of interactions per QTL. 

 
Figure 1. Three unique scale-free epistatic networks generated automatically from within 
epinetr: a) a 20-QTL network comprised of 2-way interactions; b) a 20-QTL network 
comprised of 2-, 3- and 4-way interactions; and c) a 100-QTL network comprised of 2-, 3-, 4- 
and 5-way interactions 
 

The network structure can be easily visualised using a simple plot command. Figure 1 depicts 
three potential epistatic scale-free networks generated automatically and visualised from within 
epinetr. 

The result of a simulation run is a set of files giving allele frequencies and pedigrees for each 
individual in each generation, as well as haplotypes for each individual in the final generation (or, 
optionally, each generation). Most importantly, the additive, epistatic and environmental 
contribution to each individual’s phenotype is given as an output. Finally, the mean, maximum and 
minimum phenotypic values within the population across generations can also be easily plotted 
using a single command. 
 
CONCLUSION 

epinetr is an R package designed to facilitate the modelling and analysis of epistatic networks 
and their effects on estimates of genetic parameters and selection decisions within populations, 
filling an important niche in population genetics simulation. It is hoped that it will be a valuable tool 
to better understand how different models of genetic architecture, particularly epistasis, relate to the 
problem of missing heritability. 
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