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SUMMARY 
Genomic information can accurately specify relationships among animals, including between 

those without known common ancestors.  Genetic variances estimated with genomic data relate to 

unknown, more distant, founder populations than those defined by the pedigree. Starting from 

different sets of assumptions, the properties of some alternative genomic relationship matrices (G) 

are explored. Although the assumptions and matrices differ, the resulting sets of estimated 

breeding values predict the differences between animals identically, despite obtaining different 

estimates of the additive genetic variance – showing that there are many ways of building G that 

provide identical results. For some methods integer and logic, rather than floating point, operations 

will expedite building G many-fold.   

 

INTRODUCTION 

Genomic data can provide more accurate information about relationships among animals.  

When only pedigree information is available, progeny are assumed to receive a random half of 

each parents’ genes and full-sibs are expected to share half their genes.  With genomic data we can 

tell which half of each parents’ genes an animal receives and precisely the proportion of genes 

shared by full-sibs.  Generally, genomic information provides more detailed information about 

relationships including that between individuals that share no known common ancestors.  

When a population is genotyped a genomic relationship matrix (G) takes the place of the 

numerator relationship matrix (A) in routine genetic analyses. However, unlike A, G must be built 

explicitly which can be a time consuming process particularly when the number of loci and/or 

genotyped animals is large.  When G
-1

 is needed, G must also be inverted directly as it is dense 

and unlike A, G has no simple inverse. This operation is generally more computationally 

expensive than building G whereas A
-1

 can be constructed rapidly, directly from the pedigree.  

Recently Forni et al. (2012) examined the effect of using different assumptions to build G but 

obtained the same results for some methods. This paper illustrates how using different assumptions 

when building G, can result in different G matrices and even estimated genetic variances, yet 

provide the same estimated breeding values (EBVs). It also shows how different assumptions can 

significantly expedite the process of building G. 

 

THEORY 

Estimates of relationships among individuals are essential for genetic evaluation.  Traditionally 

A fulfilled that purpose.  When combined with the genetic variance (σu
2
), variance of the breeding 

values (u) was defined to be Var(u)=Aσu
2
.  A is based on the idea of identity by descent (IBD) and 

is built by tracing the flow of genes down the pedigree.  Elements of A are twice the coancestry 

coefficient which are probabilities that limit the range of elements in A to [0,2]. Founders, the 

remotest set of ancestors with unknown pedigree, are assumed to be a random sample from a very 

large population in Hardy-Weinberg equilibrium.  The partition of A relating to the founders is an 

identity matrix, which implies that the genome of each founder consists of two subsets. The first 

subset contains loci that are all homozygous and common to all founders and thus generate no 
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phenotypic variance.  The other subset contains all loci that generate phenotypic variation. They 

are unique to each founder as off-diagonal elements of zero imply that there is no covariation with 

any other founder. This suggests that there were an infinite number of alleles at every locus in the 

base population.  

Genomic data, in the form of single nucleotide polymorphisms (SNP), can be used to build G 

(Van Raden 2008) for individuals with genotypes.  Using markers involves the strong assumptions 

relating to identity by state (IBS), where markers are deemed to be in linkage disequilibrium with 

genes affecting phenotypes, and that such genes behave similarly across the whole population, 

especially for relationships beyond the pedigree. When all individuals in the population have 

genotypes then G can be used in place of A so that the assumption about the variance of the 

breeding values becomes Var(u)=Gσu
2
. A variety of different methods are available for building G 

and some of them are equivalent to including the SNP directly as individual effects (g) in the 

model (Stranden and Garrick, 2009) in place of the breeding values, so that u=Zg and Var(g)=Iσg
2
, 

where σg
2 

is the variance due to the SNPs.  The equivalence between these methods indicates a 

degree of ambiguity and loosely implies that the effects of the SNPs, or the quantitative trait loci in 

linkage disequilibrium with them are estimable. Some methods for building G result in elements 

that have no probabilistic interpretation (e.g. elements less than zero).   

Genomic data. SNPs are the genotypes used in this paper, with each individual-locus 

represented by a number 0, 1 or 2, being the number of one of the alleles available at the locus.  

There are a animals with h haplotypes (h=2a) and m loci.  The genotypes are represented by Z, an 

a x m matrix and haplotypes by X an h x m matrix.  Haplotypes for each locus are formed 

independently of other loci. The matrix K=I  [1 1], where  is the Kronecker product, converts 

X to Z as Z=KX.  The matrix P is conformable to Z and contains the allele frequencies (p) for 

each locus in its columns.  In addition let J denote a matrix with all elements equal to 1.  

Dimensions of J are as implied in the equation where it is used.  Where necessary we specify the 

row (i) and column (j) dimensions as subscripts (Jij). 

  G matrices. Three alternative methods for building G are considered. The first of these is 

Van Raden’s (2008) first method, viz. G=MM'/d, where M=Z-2P, and d=2∑p(1-p). By 

subtracting 2P from Z genotypes are centred so that columns of M sum to zero. The denominator 

is designed to scale the matrix G to be similar to the scale of A.  This formulation of G generates 

some irregular elements that cannot be interpreted as co-ancestry.  These include negative 

elements, parent-offspring elements less than 0.5 and diagonals less than 1. Potentially, elements 

can be greater than 2 (between pairs of individuals sharing a very large number of low frequency 

alleles).   

The second method is similar to the first with genotypes centred around zero: F=(Z-J)(Z-J)'/c. 

The denominator, c, can be the same as d, or alternatively with all allele frequencies set to 0.5, 

c=m/2. F can also contain unusual elements, with the diagonal elements being a function of the 

proportion of the animals’ loci that are homozygous. Elements of F are readily computed by 

counting the numbers of identical and of opposing homozygotes between each pair of animals.  

This allows the use of integer and logical operations that are much faster than floating point 

operations required to compute (Z-2P)(Z-2P)'.  

The third method is based on building a gametic relationship matrix (H).  Nominally, a gametic 

relationship matrix (Γi) is built for each locus by counting 1 if the alleles are the same and 0 if they 

differ. Subsequently the complete gametic relationship matrix (Γ) is calculated by summing all the 

loci matrices and dividing by m. This is converted to the animal relationship as H = KΓK'/2. In 

practice, H is built as H = K[XX'+(X-J)(X-J)']K'/2m. The method for building H ensures that it 

has no elements less than 0 nor greater than 2 and no diagonal elements less than 1.   

Similarity. Expansion of the terms in the matrices illustrates the differences between them.   

1. Considering M as Z-J-D, where D=2P-J the numerator of G (=MM'/d) gives 
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             MM' = (Z-J-D)(Z-J-D)' = (ZZ'-ZJ'-ZD'-JZ'+JJ'+JD'-DZ'+DJ'+DD') 

By setting E = -ZD'+JD'-DZ'+DJ'+DD' and noting that with JamJam'=mJaa, 

        G = (ZZ'+mJ-ZJ'-JZ'+E)/d 

2.  F = (Z-J)(Z-J)'/c = (ZZ'+mJ-ZJ'-JZ')/c. 

3.  H = (K[XX'+(X-J)(X-J)']K/2)/m  

            = (KXX'K'+KJJ'K'/2-KXJ'K'/2-KJX'K'/2)/m, and since Z = KX and KJhm = 2Jam, 

              H = (ZZ'+2mJ-ZJ'-JZ')/m. 

These results clearly show how G, F and H differ and that since, G = (Fc+E)/d and F = m(H-J)/c, 

how one can be determined from another. When c=d, G = F+E/d. 

 

MATERIALS AND METHODS 
A small population made up of four sires mated to the same five dams each producing one 

offspring was generated.  Each individual had two haplotypes of 99 SNPs, a breeding value and 

phenotype for a trait with a heritability of 0.55.  These were analysed with the model y=μ+Z1u+e, 

where the data are a function of the mean (μ), the breeding values (u) and a residual (e), and Z1 is 

an incidence matrix assigning observations to breeding values. Var(u)=Wσu
2
, where W is a 

relationship matrix and Var(e)=Iσe
2
.  Genetic parameters for this population were estimated using 

five different matrices W.  The first used G with a small amount (0.01I) added to make it 

invertible (positive definite), the second and third used F with denominators of d and m/2 

respectively, the fourth used H and the last used F+10J. These data were analysed with 

WOMBAT (Meyer, 2007) to estimate variance components and breeding values. 

 

RESULTS AND DISCUSSION 

G matrices. The construction of the various matrices shows clearly how they relate to each 

other. The difference between G and F(c=m/2) arises from the different allele frequencies. F and 

H differ in their denominators and there is an additional term (mJ) included in H that is not in F.   

Evaluations. The results in Table 1 show that, regardless of which W matrix is used, the 

estimated breeding values (EBVs) are the same.  The correlations between EBVs from different 

analyses are 1, or close to 1, as are the regressions of 1 on those obtained when W=G.  Differences 

in estimated means are unimportant as EBVs are relative measures of genetic merit. Slight 

differences occur when G is used, compared to the other methods as its diagonal was augmented 

and some difference in the mean may be due to E. The addition of 10J to F has no effect, 

indicating that adding any multiple of J (results not shown) to these matrices have no effect.  

These results show the practice of augmenting the diagonal of G should be superseded by adding 

kJ, where k is small, to ensure G is invertible.  The likelihoods and residual variances are also the 

same for all models. Similar genetic variances were estimated when G or F was used. While the 

addition of a multiple of J to F matrices has no effect, it suggests a higher degree of relationship in 

that population than F alone. Using H obtained a considerably higher additive genetic variance  

 

Table 1: Results from evaluation of simulated data using different relationship matrices 

 

Relationship

Matrix 

Log-

Likelihood 

σe
2
 σu

2
 μ Regression of 

EBVs on EBVs(G) 

Correlation 

EBVs with 

EBV(G) Intercept Slope 

G -76.55 51.22 31.74  0.000 - - - 
F(c=d) -76.55 51.27 31.71 -0.027 0.027 0.999 1.0 

F(c=m/2) -76.55 51.27 33.83 -0.027 0.027 0.999 1.0 
H -76.55 51.27 67.73 -0.027 0.027 0.999 1.0 

F+10J -76.55 51.25 31.74 -0.027 0.027 0.997 1.0 
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than other matrices.  This might suggest that H uses a more ancient set of founders than assumed 

when G or F is used.  However, since Var(u)=Wσu
2
, and if it is only their denominators that differ 

(W1=wW2), the estimated additive genetic variance must vary in a complementary manner 

(σu1
2
=σu2

2
/w). This is so for F(c=d) and H where the ratio of the additive genetic variances is d/m 

and similarly for F(c=d) and F(c=m/2) where this ratio is 2c/m. 

Although the various genomic relationship matrices were different, their inverses, also 

necessarily different, provide the same results which may seem surprising given the different 

assumptions.  Despite this, the same results indicate that the inverses are simple functions of each 

other showing that the genomic data are being used in exactly the same way.   

The equivalence between these methods, based on relationship matrices, can be illustrated by 

considering modelling the genotypes directly. With this model the addition of a constant to the 

SNP genotypes for each locus has no effect on anything but the overall mean. The additive 

breeding values (u=Zg) would be the same as if nothing had been added. This is akin to centering 

alleles around different values and adding terms like E and kJ to any W. 

These results show that different approaches to using genomic data may not ensure real 

differences and may explain why some methods used by Forni et al. (2011) have identical results. 

These results also show that the apparent problems relating to strange elements (negative off-

diagonals, and diagonals less than 1) in G are nothing to fear, they are simply on a different scale 

to the other Ws.  Starting with the idea of SNP similarity provides H which, by construction, can 

have a similar probabilistic interpretation to A.  However, H provides a much greater genetic 

variance than the other methods, but this can be modified by factoring it by c/m.   

As genomic data provide relationships among individuals that are not IBD, it is clear that the 

unknown founder population implied when genomic data are used must be different to the known 

founder population derived from pedigrees.  These results show that the estimated additive genetic 

variance is sensitive to assumptions about allele frequencies which determine the denominator 

and, indirectly, the unknown founder population.  Paradoxically, the EBVs estimated from each of 

these evaluations are insensitive to the different estimates of additive genetic variance when 

combined with the appropriate W.  Conversely, incorrect EBVs could result from combining a 

relationship matrix W with an inappropriate additive genetic variance. 

Building the numerators of F and H are based on Z and X.  These matrices are integers and 

provide the opportunity to use integer rather than floating point operations.  Furthermore, as the 

non-zero elements of Z-J are only 1, and -1 the process of building F can be done with logic 

operators which is magnitudes faster than the floating point operations used to build G. 

 

CONCLUSION  
Many ways of using genomic data to determine relationships among individuals in a 

population, while appearing to be different, are similar.  Although they may be based on different 

assumptions, and can provide different estimates of the additive genetic variance, they provide the 

same measures of genetic merit of the population.  The estimate of the additive genetic variance is 

sensitive to the estimate of allele frequencies.  F should be used in place of G, as it is much 

quicker to build and provides an equivalent model and it does not require augmenting the diagonal 

to make it invertible. 
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