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SUMMARY
The impact of parameterising to genetic principal components and dimension reduction on

computational requirements is examined for a subset of traits considered in single step evaluation of
sheep in Australia. Together with judicious treatment of dense blocks due to genomic relationships in
the mixed model equations, such models can reduce computational requirements many-fold.

INTRODUCTION
Genetic evaluation utilizing genomic information is in the process of being adopted in many

livestock improvement schemes. In particular, the so-called ‘single-step’ procedure allows for joint
evaluation of all animals – genotyped or not – utilising all pedigree information available at the same
time (Misztal et al. 2009). It can be thought of as an extension of previous, best linear unbiased
prediction schemes, replacing the pedigree based numerator relationship matrix between animals, A,
by it’s counterpart, H, which combines the genomic relationship matrix among genotyped animals,
G, with relationships derived from the pedigree. Computing the inverse of H requires large matrix
products and direct inversion of G and the corresponding submatrix of A, and challenges thus posed
have attracted considerable attention (e.g. Aguilar et al. 2011).

Computational requirements to estimate breeding values are heavily dependent on the number
of non-zero (NNZ) elements in the coefficient matrix, C, of the mixed model equations (MME) to
be solved. In a multivariate analysis comprising q traits, each non-zero element of the inverse of the
relationship matrix can contribute up to q2 elements to C. Equivalent and reduced rank models have
been proposed which can reduce this number (Meyer and Kirkpatrick 2005; Meyer 2009), but have
seen little practical use. Let animals be grouped according to their genomic information status, with
H22 the submatrix of H for genotyped individuals. Typically, H22 and the corresponding block of H−1

are dense, i.e. contain few zero elements. Hence, the NNZ elements in C arising from elements of
H−1 becomes more important than previously, where the inverse relationship matrix A−1 was sparse
throughout. Furthermore, existence of dense blocks in the MME together with substantial amounts
of random access memory (RAM) available in modern hardware readily allow matrix manipulation
routines from highly optimized software libraries to be exploited. We examine the utility of equivalent
or reduced rank models together with the use of multi-threaded library routines for dense matrix
calculations for an application of single-step genetic evaluation to Australian sheep data.

EQUIVALENT MODELS AND BEYOND
Consider a linear mixed model for q traits, y = Xβ + Zu + e with y, β, u and e the vectors

of observations, fixed and random effects, and residuals, and X and Z the pertaining incidence
matrices. Let u represent animals’ additive genetic effects, ordered by animals within traits so that
Var (u) = Σ ⊗H, with Σ the genetic covariance matrix among traits. For Var (e) = R, the diagonal
block in C for u is then Cuu = Z′R−1Z + Σ−1⊗ H−1. The first part, Z′R−1Z, is block-diagonal for
animals, with blocks of size q × q. If Σ−1 has no zero elements, Σ−1⊗H−1, however, contributes q2

non-zero elements to Cuu for each non-zero off-diagonal element of H−1.
An equivalent model is obtained by expanding Zu to Z(Q ⊗ I)(Q−1 ⊗ I)u = Z?u?, with I an
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identity matrix. This gives Var(u?) = Q−1ΣQ−T ⊗H = Σ?⊗H and C∗uu = Z?′R−1Z?+ (Σ?)−1⊗H−1.
Choosing Q so that Σ? is diagonal reduces the NNZ elements contributed by each non-zero element of
H−1 to q. The trade-off for this is that Z? has up to q non-zero elements per observation compared to,
typically, a single element of unity in Z. This gives rise to some extra non-zero elements in other parts
of C?, especially in the off-diagonal block for fixed × random effects, X′R−1Z?. Suitable matrices Q
can be obtained from the eigen-decomposition Σ = EΛE′, either the matrix of eigenvectors, Q = E,
or the matrix of ‘factor loadings’, Q = EΛ−1/2. The latter can be rotated to lower triangular form,
Q = EΛ−1/2T (with TT′ = I) which reduces the NNZ elements in Q to q(q + 1)/2 and thus the
number of multiplications to set up the MME and the NNZ in X′R−1Z?.

Furthermore, this parametrization can directly yield substantial, additional computational savings
by invoking a ‘reduced rank’ model, if Σ has q − r negligible eigenvalues, which generally holds for
larger values of q. This involves estimating only the first r principal components (i.e. elements of
u?) for each animal which, at convergence, are combined to give the q corresponding elements of u.
This is achieved by simply considering only the first r columns of Q, which reduces the number of
equations in the model as well as the NNZ elements.

MATERIAL AND METHODS
Data consisted of 5.24 million records for 5 traits recorded on 1.77 million animals in the

LAMBPLAN terminal sire breeds evaluation (Brown et al. 2007), representing the most commonly
recorded traits in these breeds, namely birth, weaning and post-weaning weights, and post-weaning
eye muscle and fat depth. Including parents without records there were 1,995,755 animals of which
10,698 (N) were genotyped for 48,599 single nucleotide polymorphisms. To build H−1, genomic
relationships were computed following Yang et al. (2010). This yielded 63,793,942 NNZ elements in
H−1 (halfstored), compared to 6,584,393 elements in the corresponding pedigree based matrix A−1.

As in the routine LAMBPLAN evaluation, records were pre-corrected for the effects of birth-
rearing type, age at measurement and age of dam, and body weight as a covariate for eye muscle
and fat depth. The model of analysis then comprised contemporary groups as fixed effects, animals’
additive genetic effects, dams’ permanent environmental effects for the body weights (653,067 levels),
and genetic groups (93 levels) as random effects. The latter were fitted ‘explicitly’ – assigning
proportions of membership for each animal – as augmenting the pedigree by phantom parents in
single-step applications can be problematic (Misztal et al. 2013).

Analyses fitted standard multivariate (MV) and the principal components (PC) models described
above. Dense diagonal blocks in C (or C?) for genotyped animals were stored in two-dimensional
arrays, a single matrix of size qN × qN for MV and r blocks of size N × N for PC model analyses.
Similarly, if fitted, genetic groups were held in a single dense block. No distinction between MV and
PC was made for this effect, as the transformation yielded sufficient additional coefficients between
levels for different traits from the data part, Z?′R−1Z?, for the corresponding off-diagonal blocks to be
almost dense. The remaining non-zero coefficients in the coefficient matrix were held in compressed
sparse row format. A preconditioned conjugate gradient (PCG) algorithm (e.g. Tsuruta et al. 2001)
with partial Cholesky decomposition preconditioner was used to solve the MME. Cholesky factors and
solutions for the dense blocks were obtained using LAPACK routines DPOTRF and DPOTRS (Anderson
et al. 1999), respectively. The product of the coefficient matrix and a vector required in each PCG
iterate was formed using routines DSYMV from the BLAS library (Blackford et al. 2002) and the Intel
sparse matrix equivalent, MKL_DCSRSYMV.

Computations were carried under Linux on a machine with 256GB of RAM and 16 Intel Xeon
CPU E5-2630 cores, rated at 2.4Ghz with a cache size of 20MB. BLAS and LAPACK routines used
were loaded from the Intel Math Kernel Library (MKL), version 11.1.
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Table 1. Computing requirements for equivalent models for 5 traits

Without genetic groups With genetic groups

Pedigree Genomic Pedigree Genomic
MV PC MV PC MV PC MV PC

No. of equations 12,182,223 12,182,688
NNZa Sparse after data 50.7 66.2 50.7 66.2 223.8 316.0 223.8 316.0

after random 179.2 89.1 178.9 89.1 352.3 338.9 352.0 338.9
Dense genotyped – – 1430.6 286.1 – – 1430.6 286.1

Total 191.4 101.3 1621.6 387.4 364.6 351.2 1794.8 637.2
Memory (GB) 4.3 3.3 25.6 7.8 7.8 7.7 28.8 11.6
No. of PCG iterates 684 693 682 690 1357 1387 1339 1389
Timeb single 22.1 19.1 90.5 28.9 44.8 46.4 165.0 64.4

multi 20.5 20.8 65.3 31.7 42.2 42.9 122.6 61.1
aNo. of non-zero elements in coefficient matrix (in million) bin minutes, for single- and multi-threaded MKL routines

RESULTS
Computational requirements for analyses fitting equivalent models are summarized in Table 1,

comparing models with and without the use of genomic information. Values given for NNZ elements
pertain to one triangle of the symmetric coefficient matrix. As expected, there were marked differences
in the NNZ elements between MV and PC models, with more elements arising from the ‘data part’
but substantially less non-zero elements due to covariances between random effects for the PC models,
especially for single-step analyses. Fitting genetic groups increased the NNZ elements substantially
and almost doubled the number of PCG iterates required. PC models proved highly advantageous,
with overall computing times reduced 2- to 3-fold when genomic relationships were considered.
While CPU time summed over threads when using multi-threaded MKL routines (not shown) seemed
to indicate pronounced parallel processing, differences in elapsed time to single-thread runs were
surprisingly small, suggesting ‘processor spin’ rather than actual simultaneous execution.

Corresponding results for a 10-trait scenario, obtained by doubling the data, for single-step models
with genetic groups are given in Table 2. Considering more traits amplified differences between
models and improved multi-thread performance, especially for the Cholesky decomposition of the
diagonal block(s) for genotyped animals in the preconditioning step. Reducing the number of principal
components fitted decreased the number of equations in the model and NNZ elements in the coefficient
matrix. Results clearly illustrate the increasing advantage of PC over MV models with the number of
traits and number of negligible eigenvalues in the genetic covariance matrix among traits.

DISCUSSION
We have described a simple reparameterisation of the standard multivariate mixed model –

estimating genetic effects for principal components rather than the traits of interest – and illustrated its
potential to reduce computational requirements, especially when parts of the inverse of the relationship
matrix are dense. In addition, this parameterisation directly lends itself to dimension reduction by
eliminating the principal components which explain virtually no genetic variation, which becomes
increasingly important with the number of traits considered. Even a relatively small reduction in
dimension can have a big impact on computational requirements with negligible effects on the
accuracy of genetic evaluation, if chosen judiciously. Calculations shown for the small subset of traits
in LAMBPLAN considered here held the MME in core. In practice, this is unlikely to be feasible and
an ‘iteration on data’ type strategy needs to be employed instead (Tier and Graser 1991). However, the
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Table 2. Computing requirements for full and reduced rank models for 10 traits

MV10 PC10 PC9 PC8 PC7 PC6

No. of equations (in million) 24.37 24.37 22.37 20.37 18.38 16.38
NNZa Sparse after groups 901.8 1355.4 1208.4 1015.2 840.3 683.6

after random 1420.1 1401.2 1249.6 1051.9 872.4 711.1
Dense genotyped 5722.4 572.3 515.1 457.8 400.6 343.4

groups 0.313 0.331 0.271 0.215 0.164 0.121
Total 7167.1 1989.1 1787.3 1530.2 1291.4 1070.9

Memory (GB) 104.0 28.9 26.4 23.1 20.2 17.3
No. of PCG iterates 1797 1938 1969 1913 1891 1517
Timeb single Precondition 293.3 3.25 3.00 2.57 2.40 1.95

Total 959 202 188 155 139 126
multi Precondition 25.0 0.6 0.5 0.4 0.4 0.3

Total 551 147 140 127 116 88
aNo. of non-zero elements in coefficient matrix (in million) bin minutes, for single- and multi-threaded MKL routines

NNZ in the coefficient matrix is likely to be at least equally important in such schemes. In addition, if
sufficient memory is available, they are readily combined with in-core storage of dense blocks and
experience gained here with library routines for matrix computations should be directly transferable.

CONCLUSIONS
Computational strategies described are expected to play an essential rôle in making multi-trait,

single-step genetic evaluation for Australian livestock computationally feasible.
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