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SUMMARY 

We investigated how well rare variants can be imputed, using 1000 bull genomes sequence 

data set (1147 sequences) as a reference for imputation, and a target set of dairy cattle with 630K 

SNP genotypes, that were also genotyped for four rare recessive defects (BLAD, CVM, HH1 and 

JH1).   The proportion of carriers correctly imputed ranged from 1, for JH1, to 0.04 for CVM.  

There was a general trend for the proportion of carriers correctly imputed to increase as the 

frequency of the rare allele increased.  CVM did not follow this trend – the frequency of the rare 

allele for this locus was 10 times higher than for BLAD, but proportion of carriers correctly 

imputed was much lower than BLAD. On closer inspection, the core haplotype of sequence 

variants common to all CVM carriers was found in many non-carriers, and even in breeds other 

than Holstein (the disease has only been reported in Holstein).  This was in contrast to JH1, where 

the core haplotype shared by carriers was unique to carriers, and was not found in other breeds.  

These results shed light on why we can impute some rare sequence variants well, while others are 

very difficult to impute. 

 

INTRODUCTION 

One motivation for using whole genome sequence data in genomic prediction and genome 

wide association studies (GWAS) is that whole genome sequence data will include rare variants 

which may explain some variation in the targeted complex traits.  SNP arrays have limited power 

to capture this variation, as the SNP on these arrays are selected to have high minor allele 

frequency (MAF), and are therefore unlikely to be in high linkage disequilibrium with the rare 

variants.  The cost of whole genome sequencing is currently too high to sequence the large number 

of individuals required for accurate genomic predictions or powerful GWAS.  Therefore an 

alternative strategy has been proposed – sequence a proportion of the individuals in the population 

(1000 Genomes Project Consortium et al. 2012), or preferably the key ancestors of the population 

(eg Daetwyler et al. 2014), and then impute the sequence variants into all individuals genotyped 

with SNP arrays.  How much variation is explained by rare variants in subsequent genomic 

predictions or GWAS will then depend on how much the rare variants truly explain, and the 

accuracy of imputing these rare variants.        

Here we investigate how well rare variants can be imputed, using 1000 bull genomes sequence 

data set as a reference, and a target set of dairy cattle that were actually genotyped for four rare 

recessive defects.  In order to gain insights into parameters affecting accuracy of imputation of rare 

variants, we investigated the length of core haplotype surrounding the disease allele for each 

recessive defect, the occurrence of this haplotype (minus the disease allele) in non-carriers and the 

frequency of this haplotype in breeds other than the one in which the disease occurs.   

 

MATERIALS AND METHODS 

Carrier status (from genotyping the causal mutation was available for four recessive diseases -  

Bovine leukocyte adhesion deficiency (BLAD, Shuster et al. 1992), complex vertebral 

malformation (CVM, Thomsen et al. 2006), Holstein Haplotype 1 (HH1, Adams et al. 2012) and 
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Jersey Haplotype 1 (JH1, Sonstegard et al. 2013).  Genotypes for these mutations were available 

for 5987 Holstein (BLAD, CVM), 707 Holstein (HH1) and 16 Jersey bulls (JH1), respectively, as 

well 630K Bovine HD real or imputed SNP genotypes (eg. Erbe et al. 2012).  In order to impute 

the BLAD, CVM, HH1 or JH1 genotypes into these animals, to compare with their actual 

genotypes, we used a reference data set of 1147 bulls and cows of 20 breeds with whole genome 

sequence, These reference animals were sequenced at between 4 and 40 times coverage, with an 

average of 11.2x, from 1000 bull genomes Run4.0.  The breeds with largest number of sequenced 

individuals were Holstein, Angus and Fleckvieh.  Variant calling and filtering was as described by 

Daetwyler et al. (2014).  Variants with less than 4 copies of the minor allele were removed.  We 

checked that all known carriers of BLAD, CVM, HH1 or JH1 that had whole genome sequence 

data (eg were part of the 1000 bull genomes) were genotyped correctly for these mutations, this 

was the case.  Two imputation strategies to impute sequence variants into the target populations 

were tested, Fimpute (Sargolzaei et al. 2014) or Beagle phasing followed by Minimac imputation  

(Howie et al. 2012).  Differences between these programs are that Fimpute uses full pedigree 

information, while Minimac does not, and Fimpute considers variable length haplotypes, starting 

from long haplotypes, when deciding if a pair of animals share a haplotype.  Actual genotypes of 

the recessive lethals for target animals were not included when target animals were imputed to 

whole genome sequence genotypes.  Imputed genotypes were then compared to actual genotypes 

for these defects.   

 

RESULTS AND DISCUSSION 

The proportion of genotypes imputed correctly was close to one for all loci, Table 1.   

 

Table 1.  Proportion of genotypes and proportion of carriers correctly imputed for four 

genetic defects.    

 BLAD CVM HH1 JH1 

Chromosome 1 3 5 15 

Location (bp) 145114963 43412427 63150400 15707169 

Frequency 0.001 0.010 0.025 0.156 

Bulls genotyped in target population 5987 5987 707 16 

Genotypes imputed correctly     

   Fimpute 5970 5836 701 16 

   Minimac 5860 5860 705 16 

Prop. genotypes imputed correctly     

   Fimpute 0.997 0.97 0.99 1.00 

   Minimac 0.98 0.98 0.997 1.00 

Number of carriers 17 123 35 5 

Carriers correctly imputed     

   Fimpute 13 5 29 5 

   Minimac 11 12 33 5 

Prop. carriers correctly imputed     

   Fimpute 0.77 0.04 0.83 1.00 

   Minimac 0.65 0.10 0.94 1.00 
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However this is a poor measure of how well imputation has performed for rare variants, given the 

high probability of filling in the correct genotype by chance (a very high proportion of animals are 

homozygous for the non-disease allele).   

A better measure of how well imputation has performed is the proportion of carriers correctly 

imputed – for GWAS and genomic prediction, this will determine how well the SNP effect can be 

estimated.  This ranged from 1, for JH1, to 0.04 for CVM.  There was a general trend for the 

proportion of carriers correctly imputed to increase as the frequency of the rare allele increased.   

The imputation of CVM genotypes did not follow this trend – the frequency of the rare allele for 

this locus was 10 times higher than for BLAD, but the proportion of carriers correctly imputed was 

much lower than for BLAD.                 

To investigate why this might be the case, and given imputation is based on haplotype 

information shared between individuals, we determined the length of haplotype in the sequenced 

bulls (from the 1000 bull genomes project) surrounding the rare allele of each locus that was 

common between all carriers, the “core haplotype”.  To do this, we allowed for sequencing error, 

such that the shared haplotype was considered to end only when there were at least two differences 

in the alleles of the haplotype of the carriers (eg one difference was considered to be likely 

sequencing error - in fact there were only one or at most two instances of this per disease).  HH1 

had the longest core haplotype, while CVM had the shortest, Table 2.  We then investigated how 

many non-carriers amongst all the Holstein sequenced bulls (for BLAD, CVM, and HH1) or 

Jersey sequenced bulls (JH1) had the core haplotype (not considering the disease allele itself).  

This ranged from zero, for JH1, to 159, for CVM.  For all diseases except JH1, the core haplotype 

also occurred in other breeds (where these diseases have never been observed), though at very low 

frequency, and in only a small number, except for CVM.     

 

Table 2.  Length of core haplotype shared by all whole genome sequenced carriers of the 

disease (rare) allele for four lethal recessive diseases, number of non-carriers in which core 

haplotype is found, and number of other breeds in which core haplotype is found.   

 BLAD CVM HH1 JH1 

Number of carriers with whole genome sequence 6 30 7 12 

Variants in core haplotype (shared by carriers) 302 93 437 633 

Length of core haplotype (bp)* 40,362 21,020 57,173 48,608 

Number of non-carriers in which core haplotype is found 4 159 1 0 

Number of other breeds in which core haplotype is found 1 24 2* 0 

*One of these was Danish red, which has Holstein introgressions 

 

Given these results, we can start to speculate why the imputation of CVM genotypes is so poor, 

while for JH1, HH1 and BLAD imputation is more precise.  The background haplotype in which 

the CVM mutation occurs, appears to be very common, even across breeds.  It is likely that the 

CVM mutation occurred recently into this common haplotype background, such that there are 

otherwise identical haplotypes at reasonable frequency, without the mutation.  This makes 

imputation, which is based on haplotype information, very challenging.  In contrast, the JH1 

mutation is imbedded in a longer haplotype which was likely at a lower frequency at the time the 

mutation occurred, such that carriers of the haplotype are also very likely to be carriers of the 

mutation as well.  Parameters such as the frequency of the core haplotype into which the rare 

mutation occurred likely explain results from other studies as well, such as those of Bouwman et 

al. (2014), where reference sets for imputation which included multiple breeds improved accuracy 

of imputing a proportion of rare variants, but not others, compared to single breed reference sets.   
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Is there any way to improve the precision of imputing rare variants in light of the above?  One 

of the first tasks is to reduce the error rate of genotyping variants from the whole genome sequence 

data – this complicates the identification of the core haplotype shared by carriers of the rare allele, 

and importantly might reduce the length of the core haplotype that can be confidently identified, 

which will reduce the accuracy of imputation (longer shared haplotypes between individuals lead 

to more precise imputation, eg Sargolzaei et al. 2014).  Phasing errors are also important (phasing 

is necessary for imputation both in the sequenced animals and in the animals genotyped with 

630K, and there could be errors in either), and are compounded by genotyping errors.  So reducing 

genotyping errors could also improve the accuracy of phasing the data, which is desirable as any 

switch errors (false positive recombinations), if these are in the reference animals, will also reduce 

precision of imputation in the target animals.  A practical way to remove some genotyping errors 

would be to run imputation for very rare variants within a breed, or combine LD information 

across closely related breeds (based on Fst for example) ), only considering variants that segregate 

within the breed or group of breeds.  This would reduce the number of variants (per breed), and 

therefore the opportunities for genotyping error, by 50% (Daetwyler et al. 2014).  Information 

could then be accumulated across breeds.                 

 

ACKNOWLEDGEMENTS 

The authors thank all members of the 1000 Bull Genomes Consortium for provision of data. 

 

REFERENCES 
Chadeau-Hyam M., Hoggart C., O'Reilly P., Whittaker J., De Iorio M. and Balding D. (2008) 

BMC Bioinformatics 9: 364. 

Erbe M., Hayes B.J., Matukumalli L.K., Goswami S., Bowman P.J., Reich C.M., Mason B.A. and 

Goddard M.E. (2012)  J. Dairy Sci. 95: 4114. 

Shuster D.E., Kehrli M.E. Jr, Ackermann M.R., Gilbert R.O. (1992) Proc Natl Acad Sci U S A. 

89:9225. 

Thomsen B., Horn P., Panitz F., Bendixen E., Petersen A.H., Holm L.E., Nielsen V.H., Agerholm 

J.S., Arnbjerg J., Bendixen C.  (2006) . Genome Res. 16:97. 

Adams H.A., Sonstegard T., VanRaden P.M., Null D.J., Van Tassell C., et al.. (2012) Plant and 

Animal Genome Meeting, Poster P0555, June 14–18 2012, San Diego. 

Sonstegard T.S., Cole J.B., VanRaden P.M., Van Tassell C.P., Null D.J., et al. (2013) PLoS ONE 

8: e54872.  

Sargolzaei M., Chesnais J.P., Schenkel F.S. (2014) BMC Genomics. 15:478.  

Howie B., Fuchsberger C., Stephens M., Marchini J., Abecasis G.R. (2012)  Nat Genet 44:955 

Daetwyler H.D., Capitan A., Pausch H., et al. (2014) Nat Genet. 46:858. 

Bouwman A.C., Veerkamp R.F. (2014) BMC Genet. 15:105. 

1000 Genomes Project Consortium, Abecasis G.R., Auton A., et al.  (2012) Nature. 491:56. 

Detecting causal variants

44




