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SUMMARY 

To identify the impact of using molecular breeding values (mBVs) on the New Zealand sheep 
dual-purpose (DP) index, genomic selection (GS) accuracies were estimated using a training and 
validation data set consisting of 4,237 genotyped and pedigree recorded Romney animals. 
Molecular BVs and their accuracies for a range of DP production traits including live weight, 
fleece weight, faecal egg count, dagginess, reproduction and survival were estimated. The Romney 
mBV accuracies ranged from 0.16 to 0.52. For the majority of production traits the accuracies of 
the mBVs contributed information equivalent to having 1 to 8 measured progeny. For the traits: 
number of lambs born, lamb survival and lamb survival maternal the mBVs contributed between  
11 to 145 measured progeny, albeit lamb survival maternal  had a large error estimate. Combined 
with reducing the generation interval of rams used, from 2 years to 1 year, the potential increase in 
genetic gain in using mBVs in a New Zealand DP index was estimated to be 84%. 

 
INTRODUCTION 

The development of high density single nucleotide polymorphism (SNP) chips has allowed the 
development of GS which enables prediction of an animal’s worth (via mBVs) from their genomic 
information at birth. In the dairy industry, GS has been implemented in many countries (Hayes et 
al. 2009). In the sheep industry, genomic information has been successfully implemented for many 
traits and breeds in New Zealand (Auvray et al. 2011). However, the impact of genomic selection 
on the New Zealand sheep industry has not been examined. The aim of this paper is to estimate the 
increase in genetic gain attainable for the Romney breed using the Sheep Improvement Limited 
(SIL) DP selection index plus resistance to internal parasites, dagginess and lamb survival. 

 
MATERIALS AND METHODS 

Data. Phenotypes (as estimated breeding values, eBVs) and pedigree data were downloaded 
from SIL; the export consisted of 3,535,557 animals born between 1990 and 2010 for 233 SIL 
flocks. Traits included in this analysis were direct and maternal weaning weight at 3 months 
(WWT, WWTm), carcass weight (CW), live weight at 8 months (LW8), adult ewe weight (EWT), 
lamb fleece weight (LFW), fleece weight at 12 months (FW12), adult ewe fleece weight (AFW), 
dag score at 3 and 8 months (DAG3, DAG8), number of lambs born (NLB), direct and maternal 
lamb survival (SURV, SURVm) and faecal egg count in summer (FEC1) and autumn (FEC2) and 
as an adult (AFEC).  

There were 4,237 SIL recorded animals, mainly sires at least 70% Romney that were 
genotyped on the Illumina Ovine SNP50BeadChip (50K). Genotyping results were put through a 
quality control pipeline before analysis (Dodds et al. 2009); including removal of SNPs not 
retained as part of the Ovine HapMap study (Kijas et al. 2012). There were 48,327 SNPs which 
passed quality control. The animals were split into training and validation sets for each trait. Cut 
off years were chosen so at least 200 animals were used for validation.  

Statistical analysis. Molecular breeding values (mBV) were calculated for each trait using 
genomic BLUP (gBLUP) model using the methods of Garrick et al (2009) and VanRaden (2008), 
fitting the G1 (VanRaden 2008) matrix. The first 6 principal components (PC), using G1 as a 
similarity matrix, were also fitted to adjust for breed effects.  
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The accuracies of the mBVs were derived from the validation animals using 2 different 
methods. For the first method (using G1); rA = cor(y,mBV)/hg calculated using weights: 1/(1-r2). 
The effective heritability from the GS analysis (h2

g) was used and is equal to the average reliability 
(r2) of the parent-average-removed, deregressed eBV, y. The second method uses the prediction 
error variance (PEV, Mrode 2005) from a gBLUP analysis (using a relationship matrix calculated 
using breed-specific allele frequencies) giving; rI = √(1-(PEVi/σ2

u)), where σ2
u is the genetic 

variance. This was calculated for all validation animals and averaged (weighted by 1/(1-r2)). The 
‘combined-accuracy’ (rC) was taken as the average of rA and the rI.  

Comparison of genetic gain. The multiple trait selection index worksheet (van der Werf 
2006a) was used to estimate the response per selection round for a given breeding scheme scenario 
in a DP Romney flock. The breeding scheme was simulated and assumed; a flock of 631 ewes; 
rams used once at a ratio of 1:90; number of lambs weaned/ewes mated was 141% (NLB: 1.71, 
lambs weaned/lambs born: 0.86 and ewes present at lambing/ewes mated: 0.98 (McEwan et al. 
1992, Jopson et al. 2000, Pickering et al. 2012)); ewes lambed first at 2 years of age and retained 
to 5 years of age, with a 10% death and culling rate each year.  

Selection was on a DP index with emphasis on increase kg of lamb, fleece weight, number of 
lambs, disease resistance, lamb survival and decrease dag score per ewe per ha. Heritability, 
repeatabilities and genetic and phenotypic correlations were from Pickering et al (2012) or were 
those used for SIL breeding value analysis (S. A. Newman, pers. comm.). This paper utilises the 
breeders equation: Genetic gain (∆G) = irσa/L, where i is the selection intensity, r is the accuracy, 
σa is the genetic standard deviation and L is the generation interval. The paper examines changes 
to r and L under the following scenarios: 

• Scenario 1 assumed selection was on animal measurements either for a ram hogget 
(Scenario 1-A) or a 2 year old ram (Scenario 1-B) which is used only once.  

• Scenario 2: Romney ram hoggets were genotyped with a 50K SNP chip, the number of 
equivalent progeny was estimated using rC (van der Werf 2006b). This method assumes that 
the information of the mBVs and traditional eBVs are independent and this approach is 
equivalent to simple blending as outlined by Mrode (2005).  

Dual-purpose economic weights for the traits were taken from Byrne et al. (2012). The FEC1, 
FEC2 and AFEC economic weights were converted from % to loge by multiplying by 100. 

The maximum number of measurements available were; 1 measurement on the individual and 
sire, 2 on the dam (for NLB) and 126 on half sibs. For CW, LFW, AFW, FEC2 and AFEC no 
measurements were taken; these traits were estimated from their correlations with the other traits. 
Results were converted from selection response per ‘selection round’ (r*σa) to selection response 
‘per year’ (∆G) by multiplying by i/L. For scenario 1-B: i/L equalled 1.73/2.68 = 0.64 and for 
scenario 1-A and 2: i/L equalled 1.73/2.18 = 0.79. 

 
RESULTS AND DISCUSSION 

The accuracies (rC) ranged between 0.16 and 0.52, equivalent to between 1 and 145 progeny 
(Table 1). For traits with low heritability the number of equivalent progeny equal to the accuracy 
of the SNP chip is large e.g. SURV and SURVm. For traits that are easy to measure and have 
moderate heritabilities, the SNP chip is equal to 1 or 2 equivalent progeny e.g. AFW and EWT. 

The selection response per ‘selection round’ and ‘per year’ for each selection scenario is shown 
in Table 1. Scenario 1-B, resembling a farmer’s normal decision using 2 year old rams and no SNP 
chip, had a genetic response of $1.43 per year (accuracy 0.34). Reducing the generation interval, 
by using ram hoggets (scenario 1-A) increased genetic response to $1.72 per year (accuracy 0.33). 
Scenario 2, selection of a hogget ram with SNP chip information had a genetic response of $2.63 
(accuracy 0.51), an 84% increase compared to scenario 1-B.  
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Table 1. The response to each selection scenario as the unit change in trait (Δ units), the 
overall response per selection round (Response $) and accuracy, conversion factor (i/L, 
selection intensity/generation interval), and rate of genetic gain (ΔG), for each scenario1. 
Economic weighting (EW, $) for each trait and the accuracy of the SNP chip (rC) and as 
equivalent progeny (E prog). 

 

Trait  1-A 1-B  SNP chip 2 
EW Δ units Δ units  rC E prog Δ units 

Weaning weight  0.95 0.49 0.48  0.48 8 0.42 
WWT maternal 0.84 0.25 0.26  0.34 3 0.32 
Carcass weight 2.60 0.2 0.18  0.48 4 0.12 
Live weight 8 months 0.00 0.56 0.54  0.50 3 0.45 
Adult ewe weight -1.04 0.12 0.04  0.48 2 -0.30 
Lamb fleece weight 1.82 0.01 0.01  0.29 2 0.01 
Fleece weight 12 months 0.79 0.02 0.04  0.50 3 0.02 
Adult fleece weight 2.28 0.06 0.08  0.32 1 0.06 
Number of lambs born 15.55 0.01 0.01  0.52 16 0.05 
Survival 64.45 0.003 0.003  0.16 11 0.003 
Survival maternal 58.40 0.0001 0.0001  0.48 145 0.005 
Dag score 3 months -0.34 -0.11 -0.11  0.40 2 -0.08 
Dag score 8 months -0.35 -0.09 -0.09  0.44 3 -0.07 
Faecal egg count summer -3.00 -0.07 -0.06  0.46 6 -0.07 
Faecal egg count autumn -3.00 -0.04 -0.04  0.50 7 -0.06 
Adult faecal egg count -2.00 -0.07 -0.07  0.41 2 -0.09 
Response $  2.18 2.22    3.32 
Accuracy  0.33 0.34    0.51 
i/L  0.79 0.64    0.79 
ΔG ($)  1.72 1.43    2.63 

1 selected on individual, dam, sire and half sib records as ram hogget (1-A), 2 year old ram (1-B), or ram 
hogget plus SNP chip based on breed combined-accuracies from genomic selection (2). 

 
The majority of the gain was seen in the lowly heritable traits, or sex limited traits measured 

late in life. Also a proportion of the gain resulted from reducing the generation interval by using 
ram hoggets rather than 2 year old rams. The annual response in an Australian terminal index and 
a fine wool index after including genomic selection increased by 32% and 38% increase 
respectively (van der Werf, 2009). The results calculated here for scenario 2 are considerably 
larger than that presented by van der Werf (2009). They reflect differences in the economic 
weighting and accuracy of the genomic mBVs for the traits in the respective New Zealand and 
Australian breeding objectives. The example presented assumes that all animals in a flock are 
genotyped and that rams used are all of the same age. In practice, the actual response will vary by 
flock depending on the composition of the flock, breeding strategy and cost of SNP chips. Rams 
used will be a mixture of new untested rams, emerging rams used once before and mature tested 
rams. The current comparison also does not take into account the cost of genotyping. To maximise 
discounted financial returns, 2-stage selection would be used and only a proportion (10-20%) of 
ram lambs would be genotyped (Sise et al. 2011). This would effect a slight reduction on the 
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average mBV accuracies of the flock. In addition, costs would be reduced further by use of lower 
density chips, such as the 5K Ovine SNP chip, coupled with imputation. This would have minimal 
impact on the estimated mBV accuracies as shown by Berry and Kearney (2011) who estimated an 
average 97% correlation between mBVs estimated from imputed or real genotypes.  

 
CONCLUSIONS 

Genomic selection can provide a significant increase in the rate of genetic gain per year when 
selecting on the New Zealand dual purpose index. The majority of the benefit comes from the 
increased accuracy of breeding value for sex-limited and measurements recorded later in life. 
Additional benefits can be derived by reducing the generation interval via use of ram hoggets. This 
comparison did not include facial eczema, flystrike or adult ewe longevity which will also greatly 
benefit from use of genomic selection. 
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