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SUMMARY
Penalized maximum likelihood estimation has been advocated for its capability to yield sub-

stantially improved estimates of covariance matrices, but so far only cases with equal numbers of
records have been considered. We show that a generalization of the inverse Wishart distribution can
be utilised to derive penalties which allow for differential penalization for different blocks of the
matrices to be estimated. However, this requires multiple tuning factors to be determined and thus
can increase computational requirements markedly. Simulation results are presented which indicate
that the additional gains obtainable for estimates of genetic covariance components – over and above
those from a simple, non-differential scheme – are moderate, even if numbers of records for different
traits differ by orders of magnitude.

INTRODUCTION
Estimation of covariance components by restricted maximum likelihood (REML) subject to a

penalty borrowing strength from the phenotypic covariance matrix, has been shown to yield estimates
closer to the population values than their ‘standard’ unpenalized counterparts (Meyer 2011). So
far, studies to evaluate the properties of penalized estimates only considered equal numbers of
measurements for all traits. In practice, however, we may have subgroups of traits with greatly
differing numbers of records. A particular type of penalty – motivated by Bayesian estimation – is
given by minus the logarithmic value of the density of an inverse Wishart (IW) distribution added to
the REML log likelihood. Using the phenotypic covariance as scale matrix, this shrinks individual,
e.g. genetic, matrices towards the former (Meyer et al. 2011). A drawback of this ‘prior’ is the rigidity
imposed by a single parameter for the degrees of freedom. Hence an extension to a generalized inverse
Wishart (GIW) distribution (Brown 2006) has been proposed as a more flexible alternative. Munilla
and Cantet (2012) give details together with an application to account for differential uncertainty in
genetic parameters in a Bayesian analysis.

This paper describes a penalty based on the GIW distribution and presents a simulation study
examining the effect of this penalty on sampling properties of penalized REML estimates of covariance
matrices for unequal numbers of records between traits.

THE GIW PENALTY
Consider q traits with covariance matrix Σ, ordered so that 1 to q1 are the subset of traits measured

on a group of individuals without records for traits q1 + 1 to q, while a second group has all q traits
measured. Assume Σ has an IW distribution with scale matrix Ω. This gives ‘whole matrix’ penalty

P = C log |Σ| + tr
(
Σ−1Ω

)
(1)

with C ≈ 1 a constant depending on q and the degrees of freedom. Partition Σ and Ω into

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
and Ω =

(
Ω11 Ω12
Ω21 Ω22

)
according to the subsets of traits. Σ11 is independent of Σ22.1 = Σ22 − Σ21Σ

−1
11Σ12 and Σ−1

11Σ12
and has an IW distribution. The penalty for the first sub-matrix is then simply obtained ignoring
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the remaining traits. Similarly, for Ω22.1 = Ω22 −Ω21Ω
−1
11Ω12 and Ci j similar to C the conditional

distribution for the second block given the first is IW, which yields penalties

P11 = C11 log |Σ11| + tr
(
Σ−1

11Ω11
)

and P22 = C22 log |Σ22.1| + tr
(
Σ−1

22.1Ω22.1
)

(2)
Expanding (1) in terms of the submatrices and subtracting P11 and P22 gives the penalty for the
remaining covariance components (assuming C11 = C22 = C)

P12 = tr
(
Σ−1

22.1

[(
Ω21Ω

−1
11 −Σ21Σ

−1
11

)
Ω12 +

(
Σ21Σ

−1
11Ω11 −Ω21

)
Σ−1

11Σ12
])

(3)

It can be shown that P12 is proportional to minus the log density for Σ−1
11Σ12 assumed to have a

matrix-variate Normal distribution. These arguments are readily generalized to more subsets of traits;
Brown (2006) summarizes the GIW as a series of sequential, conditional distributions.

MATERIAL AND METHODS
Data for 14 traits were simulated by sampling genetic and residual effects from appropriate multi-

variate Normal distributions for a paternal half-sib design and different combinations of population
heritabilities and correlations. For case A and B, all heritabilities were assumed equal, 0.4 and 0.2,
respectively. For case C, values for traits 1 to 14 were 2× 0.6, 0.55, 2× 0.5, 0.45, 2× 0.4, 0.35 2× 0.3,
0.25 and 2× 0.2. For scenario I, all correlations were assumed to be zero and all phenotypic variances
were set to 1. For II, all genetic and residual correlations were equal, 0.5 and 0.2, respectively, and
for III correlations between traits i and j were set to 0.5|i− j| (genetic) and 0.2|i− j| (residual), while
phenotypic variances were set to mod(i, 3) + 1. This yielded nine sets of population parameters,
referred to as A-I to C-III henceforth. Records for all traits were obtained for s1 = 400 sires with 10
progeny each. In addition, records for the first q1 = 3, 5, 7, 9 and 11 traits only were sampled for
s2 = 400 or s2 = 2000 sires with 20 progeny. A total of 500 replicates per case were carried out.

Analyses. For each replicate, REML estimates of genetic (ΣG) and residual (ΣE) covariance matrices
were obtained subject to five types of penalty, involving up to three different tuning factors (ψi)

Pa = ψ1(P22 + P12 + P11) = ψ1P
Pb = ψ1(P22 + P12) = ψ1(P − P11)

Pc = ψ1P22 + ψ2P12

Pd = Pe = ψ1P22 + ψ2P12 + ψ3P11

and without penalization. Tuning factors were estimated by constructing matrices of means squares
and cross-products corresponding to the data structure for the population parameters (which are
unknown in practice), and maximizing the likelihood of estimates of ΣG and ΣE in these ‘validation
data’. This was done using a derivative-free search as implemented in routine NEWUOA (Powell 2008),
maximizing with respect to logψi to ensure that estimates were positive. Any estimates exceeding
1,000 were set to this value. For Pe maximization was performed in two steps by first estimating ψ3,
considering records for traits 1 to q1 only, and then (jointly) estimating ψ1 and ψ2 for ψ3 fixed at its
estimate from step 1.

Summary statistics. The deviation of estimated covariance matrices (Σ̂) from their population values
(Σ) was evaluated as the entropy loss (L1) and, with L̄1(·) denoting the mean over replicates and Σ̂ψ

the estimate for a tuning factor of ψ, the percent reduction in average loss (PRIAL)

L1(Σ, Σ̂) = tr(Σ−1Σ̂) − log |Σ−1Σ̂| − q PRIAL = 100
[
1 − L̄1

(
Σ, Σ̂ψ

)
/L̄1

(
Σ, Σ̂0)]

In addition, the deviation in likelihood from the (unpenalized) maximum (∆ log L) was calculated.

RESULTS
Figure 1 shows the distribution of losses in estimates of ΣG for different values of q1 for one of

the cases examined (C-III for s2 = 2000). Patterns for other constellations were similar. As to be
expected, losses in unpenalized estimates decreased substantially as the number of traits (q1) with
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Figure 1. Distribution of loss in estimates of covariance matrices for case C-III (s2 = 2000)

many records increased. Penalization reduced losses in Σ̂G and their spread throughout with relatively
small differences between types of penalty, especially for larger values of q1.

Means for tuning factors (across population values and q1), PRIALs and ∆ log L (across pop-
ulation values) for both sample sizes are summarized in Figures 2 and 3. With tuning factors
obtained by exploiting knowledge of the population values, mean PRIALs were high, especially
for small proportions of traits with many records. The number of sire families with records only
for the first q1 traits appeared unimportant until these represented at least half the traits. For Σ̂G,
differences in mean PRIAL between penalties Pa and Pe increased with q1, amounting to 13 to
20% Corresponding values for Σ̂E ranged from 22 to 30% for s2 = 400 and 13 to 25% for
s2 = 2000. Whilst only Σ̂G was penalized directly, previous studies found marked associated
improvements in Σ̂E , due to strong negative sampling correlations (Meyer 2011). For unequal
numbers of records, the effect of penalties involving a single tuning factor (Pa and Pb) on Σ̂E for
low numbers of q1 were substantially less than those with multiple factors. Again there was com-
paratively little difference between Pc, Pd and Pe, suggesting that the main benefits were obtained
by penalizing submatrices Σ22 and Σ12 differentially. Higher PRIALs for Pc, Pd and Pe were
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Figure 2. Tuning factors
(s2 = 400 and 2000)

accompanied by larger changes in likelihood. This was due to much
more stringent penalization of block Σ12. Similarly, estimating ψ3
separately to ψ1 and ψ2 (Pe) resulted in higher estimates of ψ3 and
more improvement in Σ̂G than joint estimation (Pd), suggesting that
the three-dimensional search had some problems.

DISCUSSION
It has been shown that a generalization of the inverse Wishart

distribution can be utilised to derive a penalty for penalized REML
estimation of covariance components which allows differential shrink-
age to be applied to different blocks of the covariance matrices to be
estimated. A simulation study has been used to demonstrate that this
can improve estimates more than non-differential penalties when there
are substantially different numbers of records for different subsets of
traits, especially those of residual covariances. However, this requires
separate tuning factors to be determined. While not shown here, this can increase the complexity of
analysis and computational burden markedly. The differential penalty employed utilizes sequential,
conditional distributions of subsets of traits. Results suggest that estimation of tuning factors in an
analogous fashion is advantageous.
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Figure 3. Mean percent reduction in average loss (PRIAL) for estimates of covariance matri-
ces and corresponding change in log likelihood (∆log Llog Llog L) for s2 = 400 (O) and s2 = 2000 (◦)

Simulations results given represent a ‘best possible’ scenario as tuning factors were obtained
utilizing the population values. Even so, additional improvements in estimates of genetic covariances,
over and above those achieved by a simpler, non-differential penalty (Pa), were moderate. Additional
investigations (not shown) indicated that these decreased with the size of the subset of data with
records for all traits. Somewhat surprisingly, benefits of penalties Pc, Pd and Pe were most pronounced
for the residual covariances. Whether in practice the extra gains possible warrant the additional effort
required depends on how well multiple tuning factors can be estimated from data at hand. Future
work should address this question. In the meantime, it is reassuring that the simple, non-differential
penalty appears to be fairly robust against marked differences in information available for different
traits, and can achieve a substantial proportion of the improvements feasible.

CONCLUSIONS
Differential shrinkage of different blocks of covariance matrices to be estimated is feasible,

employing a penalty based on the generalised inverse Wishart distribution. However, this requires
considerable effort to determine appropriate, multiple tuning factors whilst additional improvements
in estimates of genetic covariances achievable appear quite moderate.
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