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SUMMARY
Maximum likelihood estimation of genetic covariances subject to a penalty to reduce sampling

variation has been shown to yield improved estimates, especially for analyses comprising many traits.
However, this can increase computational requirements substantially. Similarly, penalties have been
found to be beneficial in a maximum likelihood based approach for pooling results from analyses
of subsets of traits. This paper examines the scope for using the latter method to apply penalties
to results from multivariate analyses in a computationally undemanding post-estimation step. A
simulation study is presented demonstrating that even slight changes to estimates in this way can result
in ‘regularized’ values markedly closer to population values than standard, unpenalized estimates.

INTRODUCTION
Restricted maximum likelihood (REML) estimation of genetic covariance matrices subject to a

penalty to borrow strength from their phenotypic counterparts has been shown to ‘improve’ estimates,
i.e. to result in estimates which are, on average, closer to the population values than standard
(unpenalized) estimates (Meyer and Kirkpatrick 2010; Meyer 2011b). Whilst highly appealing,
penalized estimation can increase computational requirements by orders of magnitude. This may
be prohibitive for multivariate analyses comprising numerous traits where penalization is likely to
be most beneficial. Recently, Meyer (2013) demonstrated that penalization can also yield ‘better’
estimates when employing a maximum likelihood approach to combine estimates from analyses of
overlapping subsets of traits to construct overall covariance matrices. This suggests that the same
procedure might be used to modify estimates from a single, unpenalized multivariate analysis in a
simple, computationally undemanding post-estimation penalization (PEP) step. This paper presents a
simulation study examining the scope for PEP.

PENALIZING ESTIMATES
Penalized REML estimates are obtained by maximising the log likelihood (log L) in a multivariate

analysis subject to a penalty (P ), log L− 1
2ψP , with P a suitable function of the covariance components

to be estimated and ψ ≥ 0 the so-called tuning factor determining the stringency of penalization. For
PEP, unpenalized estimates (ψ = 0) of covariance matrices are first obtained preforming a standard,
multivariate analysis. In a second step, these are ‘converted’ to ‘data’ by forming matrices of mean
squares and crossproducts corresponding to a selected simple, balanced pedigree structure from the
estimates. Together with the assumed pseudo pedigree, these matrices then provide a likelihood
function which again is maximised subject to a penalty. Further details are given in Meyer (2013).

MATERIAL AND METHODS
Data for 10 traits were simulated for 250 independent families of size 8, as per Bondari et al.

(1978)’s design, sampling genetic and residual effects from appropriate multivariate Normal distribu-
tions for two sets of population parameters. For case A, all heritabilities were assumed equal to 0.4,
for case B values ranged from 0.6 to 0.2, 0.2 + 0.1 mod(i, 5) for trait i. All genetic correlations were
set to 0.5 and all residual values to 0.2. Phenotypic variances for the i−th trait were mod(i, 3) + 1.
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This yielded canonical eigenvalues (λi) of 0.57 and 9 × 0.29 for case A and from 0.69 to 0.14 for B.
A total of 250 replicates per case were carried out.

Analyses. Estimates of genetic (ΣG) and residual (ΣE) covariance matrices were obtained from
multivariate REML analyses (MUV), with and without penalties. Unpenalized estimates were then
modified by PEP, considering a paternal half-sib design (PHS) comprising s = 2 sires and n = 2
progeny per sire, a hierarchical full-sib design (HFS) with s = 2, d = 2 dams per sire and n = 2, and 2
families with Bondari’s design (BON, n = 8) as pseudo pedigree structures. Penalties considered
were

Pλ =
∑

i(λ̂i − λ̄)2 (1)

P `2
λ =

∑
i(log(λ̂i) − λ̄1)2 + (log(1 − λ̂i) − λ̄2)2 (2)

PΣ = log |Σ̂G | + tr(Σ̂
−1
G Σ̂0

P) + log |Σ̂E | + tr(Σ̂
−1
E Σ̂0

P) (3)

PR = log |R̂G | + tr(R̂−1
G R̂0

P) + log |R̂E | + tr(R̂−1
E R̂0

P) (4)

with λ̄, λ̄1 and λ̄2 the means of estimates λ̂i, log(λ̂i) and log(1 − λ̂i), respectively, Σ̂0
P the unpenalized

estimate of the phenotypic covariance matrix, R̂G and R̂E the estimates of the genetic and residual
correlation matrix, and R̂0

P their unpenalized, phenotypic counterpart. In addition, simple ‘bending’
(BEN) was applied, regressing λ̂i towards λ̄, as proposed by Hayes and Hill (1981).

Degree of penalization. Tuning factors for each replicate were determined as values of ψ for which
a) the sum of losses in Σ̂G and Σ̂E was smallest (“Optimum”), and b) the largest value for which the
deviation (absolute value) of log L from the (unpenalized) maximum did not exceed χ2

1,5% = 1.92
(“∆L”). In addition, fixed values selected to provide “very mild” and “mild” penalties were used, c)
ψ = 0.1 for MUV and ψ = 0.001 for PEP, and d) ψ = 1.0 (MUV) and ψ = 0.01 (PEP). For BEN,
regression coefficients were set to 0.98 for “very mild” and 0.90 for “mild” shrinkage.

Summary statistics. The deviation of estimated covariance matrices (Σ̂) for q traits from the respec-
tive population values (Σ) was evaluated as the so-called entropy loss (L1) and, with L̄1(·) denoting
the mean over replicates and Σ̂ψ the estimate for a tuning factor of ψ, the percent reduction in average
loss (PRIAL),

L1(Σ, Σ̂) = tr(Σ−1Σ̂) − log |Σ−1Σ̂| − q and (5)

PRIAL = 100
[
1 − L̄1

(
Σ, Σ̂ψ

)
/L̄1
(
Σ, Σ̂0)]. (6)

RESULTS
The distribution of losses in estimates of ΣG for case B is summarized in Figure 1. Shown

on the left of each panel are losses for unpenalized estimates from standard, multivariate analyses.
Penalization using the optimum tuning factor (top panel) reduced both the mean and variation in losses
dramatically for all penalties and both MUV and PEP. Moreover, simple ‘bending’ performed similar
to a penalty encouraging shrinkage of the canonical eigenvalues towards their mean. In line with
previous experience with MUV for cases with a substantial spread of population canonical eigenvalues
(Meyer 2011b), a penalty shrinking correlation matrices towards their phenotypic counterpart (PR)
was most effective, with MUV yielding a PRIAL of 74% and PEP of 61%.

In practice, the optimal tuning factor is unknown and, for MUV, estimating ψ using cross-validation
techniques not only imposes a considerable computational burden but also has been found to reduce
PRIALs achieved, typically by at least 10-15%. Hence, selecting a value of ψ which limits the change
in log L from the maximum (at ψ = 0) has been suggested as a simple, pragmatic alternative, and has
been shown to yield losses L1(·) closely related to optimal values (Meyer 2011a,b). As demonstrated
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Figure 1. Distribution of entropy loss in estimates of the genetic covariance matrix for case B

in Figure 1 (middle panel), this strategy also performed well for PEP, especially for the simplest
pseudo pedigree structure. For PR, PRIALs obtained were 55 and 53% for MUV and PEP, respectively.
Limiting ∆L to a value for which the change in even a single parameter was not statistically significant
(at an error probability of 5%) yielded much milder penalization than for the optimum values of ψ,
which resulted in average changes in log L from −7.1 to −16.8. However, even such a mild penalty
consistently provided substantial reductions in sampling variation and losses in estimates of the
genetic covariance matrix. In contrast, whilst beneficial throughout, effects of penalization for a small,
fixed value of ψ varied markedly with the type of penalty and pseudo-pedigree structure chosen.

Table 1 summarizes PRIALs and the corresponding mean change in log L for selected examples.
With 9 of the population canonical eigenvalues equal, stringent penalties on the λi, Pλ or P `2

λ ,
performed best for case A, achieving optimum PRIALs (not shown) as high as 79% accompanied by
changes in log L around −17, with little difference between MUV and PEP. Conversely, choosing
ψ on the basis of ∆L was further from the optimum than for case B, but still achieved worthwhile
PRIALs of more than 40% for MUV. Corresponding values for PEP were somewhat lower, but not
too disconcertingly, especially as constellations of population values as for case A are uncommon in
practice. Again, depending on the penalty, a fixed value of ψ resulted in substantial improvement in
estimates of ΣG for both cases, but with more fluctuations than the likelihood based choice.

With penalties designed to shrink both ΣG and ΣE , a similar pattern of improvements was
observed for estimates of ΣE though PRIALs obtained were considerably lower, ranging from 14
to 28% for case A and 10 to 20 % for case B when selecting the tuning factor on the basis of ∆L.
Corresponding values for estimates of ΣP were small throughout, ranging from 0 to 3%.

DISCUSSION
Estimates of covariance components from multivariate analyses comprised of more than a few

traits are subject to substantial sampling variation. Regularization can reduce this dramatically and
thus yield estimates closer to the population values and, ultimately, result in better predictions of
genetic merit and increased response to selection, in particular if weights for selection indices need
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Table 1. Percentage reduction in average loss (PRIAL) and corresponding mean change in log
likelihood (log L) for estimates of the genetic covariance matrix imposing different penalties.

Case Value Tune Pλ P `2
λ PΣ PR

MUV PHS BEN MUV PHS MUV PHS MUV PHS

A PRIAL ∆L 46 32 38 45 43 37 38 40 41
mild 18 8 21 20 52 37 51 19 45

log L ∆L -1.88 -1.89 -1.91 -1.88 -1.88 -1.83 -1.86 -1.89 -1.86
mild -0.19 -0.15 -0.50 -0.24 -3.02 -1.71 -11.58 -0.27 -2.34

B PRIAL ∆L 53 41 46 53 53 51 52 55 53
mild 47 19 40 48 60 55 45 44 58

log L ∆L -1.87 -1.88 -1.91 -1.86 -1.88 -1.84 -1.86 -1.87 -1.88
mild -0.81 -0.20 -1.02 -0.92 -7.12 -3.96 -13.88 -0.57 -3.16

to be derived from these estimates. REML estimation subject to a penalty provides such improved
estimates but, while desirable, can be computationally demanding and accurate estimation of the
optimum tuning factor remains problematic. Hence we propose a two-step procedure as alternative,
in which standard, unpenalized estimates are modified post-estimation applying a mild penalty.

A suitable choice of the tuning factor may be based on limiting the change in log L from the
maximum to a relatively small value. For a limit corresponding to the significance threshold in a
likelihood ratio test for one parameter, results showed reductions in loss in the range of 30 to 50%,
and, except for a penalty on canonical eigenvalues on the original scale (Pλ), differences to values for
a penalized multivariate analyses were small. For an animal model with only two sources of variation,
choosing a paternal half-sib design as pseudo-pedigree structure generally performed best.

REML estimates of covariance components are biased due to constraints on the parameter space.
Improvements in estimates due to penalization generally come at the price of additional bias. While a
mild penalty may not fully exploit the scope for reducing losses, the impact of penalization is not
linear and such strategy can thus achieve a substantial proportion of the potential benefits at little
effort. In addition, mild penalization will keep the extra bias created small and often result in estimates
of individual components barely changed from unpenalized values.

CONCLUSIONS
Post-estimation penalization of multivariate estimates of covariance matrices using a likelihood

approach teamed with a mild penalty can yield substantially improved estimates. It is recommended
for routine analyses involving more than a few traits.
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