
UTILITY OF GRAPHICS PROCESSING UNITS FOR DENSE MATRIX CALCULATIONS
IN COMPUTING AND INVERTING GENOMIC RELATIONSHIP MATRICES

Karin Meyer and Bruce Tier

Animal Genetics and Breeding Unit*, University of New England, Armidale, NSW 2351

SUMMARY
The era of genomic evaluation has brought the need to perform computations involving large,

dense matrices. Particular tasks are the computation and inversion of the genomic relationship matrix.
This paper investigates the suitability of Graphics Processing Units together with highly optimised
software libraries for these computations, using blocked algorithms. It is shown that calculations are
readily sped up by parallel processing, using freely available library routines, and that reductions in
time by factors of 4 to 5 are achievable even for ‘consumer’ grade graphics cards.

INTRODUCTION
Computer gaming requires computing of large numbers of pixel values at a fast rate. This

computational load has stimulated development of ‘co-processors’ – so-called Graphics Processing
Units (GPU). Modern GPU devices have thousands of cores and capabilities well suited to general
purpose computing, providing very high rates of floating point operations. However, GPU cores have
limited features and memory, restricting the type of computations that can be accelerated by GPUs.
Typically, this requires computations to be executable in subsets and thus to be highly parallelisable.

Cole et al. (2012) discuss the potential of GPUs for applications in animal breeding. For a
long time, efficient mixed model computations in animal breeding have relied on the sparseness
of the pertaining equations. However, the advent of genomic evaluation has resulted in the need
for large-scale manipulation of dense matrices. Fortunately, highly optimised software routines are
available to perform many of the tasks required, especially in the BLAS (Dongarra et al. 1988) and
LAPACK (Anderson et al. 1999) libraries. Their efficiency in computing the genomic relationship
matrix (GRM) and its inverse has been demonstrated by Aguilar et al. (2011) and Meyer et al. (2013).

Use of a GPU requires a special programming interfaces such as CUDA (Compute Unified Device
Architecture), the NVIDIA proprietary platform (NVIDIA Corporation 2013). Matrix computations
on GPUs are greatly aided by corresponding software libraries: CUBLAS, part of the CUDA toolkit,
provides GPU accelerated BLAS routines, and the equivalents to LAPACK routines are available
from the CULA (Humphrey et al. 2010) or MAGMA (e.g. Dongarra et al. 2012) libraries. This allows
for applications using such tools to be readily ported to GPUs, though challenges arise from their
limited memory which requires matrices and computations to be broken into blocks accommodated
on GPU devices. This paper presents a first investigation into the scope of GPUs to accelerate dense
matrix computations, such as required to calculate and invert the GRM.

MATRIX MANIPULATION BY PARTS
Calculation of the GRM, G, involves a matrix product of form αZZ′ with dimensions of Z equal

to the number of individuals (n) × number of alleles (s) and α a scale factor (Van Raden 2008). As
G is symmetric, only one triangle needs to be computed. Calculations represent a rank-k update of
a symmetric matrix, a task performed by BLAS routine SYRK. Partition G and Z into blocks Gi j

(i, j = 1, r) and Zik (i = 1, r and k = 1, t), as dictated by memory available on the GPU. Blocks
Gi j = α

∑t
l=1 ZilZ′jl can then be computed by repeated calls to SYRK for i = j and BLAS routine

GEMM (which evaluates a general matrix by matrix product) for i , j.
*AGBU is a joint venture of NSW Department of Department of Primary Industries and the University of New England

Proc. Assoc. Advmt. Anim. Breed. Genet. 20:270-273

270



GCC B chol(GCC) POTRF
GCC B G−1

CC TRTRI
GPC B GPCGCC TRMM
GPP B GPP + GPCG′PC SYRK
GCT B G′CCGCT TRMM
GTT B GTT −G′CT GCT SYRK
GPT B GPT −GPCGCT GEMM
GCT B −(GCCGCT ) TRMM
GPC B GPCG′CC TRMM
GCC B GCCG′CC LAUUM

Figure 1. Algorithm for block-
wise matrix inversion

Inversion. A standard method to invert a symmetric, positive
definite matrix is to carry out a Cholesky decomposition, cal-
culate the inverse of the factor and multiply the latter with its
transpose, taking advantage of the triangular nature of these
matrices. This can be performed by LAPACK routines POTRF
and POTRI. For block-wise inversion, Gauss-Jordan elimina-
tion type algorithms have been suggested (Quintana et al. 2001;
Ezzatti et al. 2011; Benner et al. 2011). This can be carried out
‘in place’, overwriting G with G−1. For each step, partition G
into current (C), previous (P) and trailing (T) blocks with n1,
nb (chosen block size) and n2 rows, respectively.

G =

GPP GPC GPT

GCP GCC GCT

GT P GTC GTT


At the beginning, current and trailing blocks contain the respective parts of G given GPP. The
algorithm then starts with the Cholesky factorisation of the current, diagonal block, GCC = R′R, and
inversion of R, an upper triangular matrix. This is followed by steps adjusting previous blocks for the
contribution of G−1

CC to their inverses, and trailing blocks by ‘absorbing’ rows and columns n1 + 1 to
n1 + nb. Finally, G−1

CC is obtained as R−1(R−1)′. Blockwise calculations are repeated, updating n1 to
n1 + nb and n2 to n2 − nb, until n1 = n and n2 = 0. Pseudo-code adapted from Benner et al. (2011)
(correcting errors in their description), together with the appropriate BLAS or LAPACK routines for
individual calculations are given in Figure 1 (with A B B denoting replacement of A by B).

MATERIAL AND METHODS
Time required for both types of matrix operations were compared using simulated matrices.

For the matrix product, allele counts were obtained by sampling values 0, 1 or 2 from a uniform
distribution for s = 512000 and n = 512 to 20,480 individuals. For matrix inversion, successive
submatrices of a GRM set up as in Meyer et al. (2013), were used considering n = 512 to 16,384.

Calculations were performed in single precision, using either a single CPU (CPU1), all (4) CPU
cores available (CPU4) or the GPU, performing computations in blocks as required by memory limits.
For matrix multiplications on the CPU, Z was processed in up to 5 blocks, splitting Z adaptively into
submatrices Zil of size n× z with z chosen that Zil did not exceed 10 Gb. Corresponding computations
on the GPU used 250 blocks of size of n × 2048 for n ≤ 12800, and n/2 × 2048 otherwise. For matrix
inversion, use of LAPACK routines POTRF and POTRI for the complete matrix on both CPU and
GPU was contrasted with the block algorithm described above on the GPU (GPUB). This used a block
size (GCC) of nb = 2048 and, as suggested by Benner et al. (2011), employed a hybrid algorithm with
LAPACK routines (POTRF, TRTRI and LAUUM) executed on the CPU, using all 4 cores.

Computing environment. Calculations were carried out on a desktop computer running Linux, with
CUDA 5.0. This was equipped with a quad-core Intel I7-960 processor rated at 3.2 Ghz with 8 Mb
cache and 12 GB of RAM, and GPU capable NVIDIA GeForce GT240 graphics card with 96 cores, a
clock speed of 1.46GHz and 1 Gb of memory. Programs were written in Fortran and compiled using
gfortran (gcc 4.4.3), loading BLAS and LAPACK routines from the CUBLAS and CULA libraries
and the Intel MKL 11.0 library for computations on the GPU and CPU, respectively.

RESULTS
Computing times required to form the product ZZ′, shown on a logarithmic scale, are con-

strasted in Figure 2. With sn(n + 1) floating point operations per product, half multiplications and

Genomic Selection – relationships

271



●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

101

102

103

104

0 5000 10000 15000 20000
Matrix size

S
ys

te
m

 ti
m

e 
(s

ec
s)

● GPU

CPU4

CPU1

Figure 2. Times for matrix product

half additions, these increase quadratically
with the number of individuals. As previously
shown by Aguilar et al. (2011) (though they
utilised BLAS routine GEMM which does not
exploit the symmetry of G and thus requires
2sn2 operations), results demonstrate that cal-
culations involved are highly suited to parallel
processing. Using all 4 CPU processors avail-
able decreased the computing time on average
by a factor of 3.69. Employing the GPU re-
duced times further for all cases, even if n was
too large to carry out computations for all n
through one call to routine SYRK with the
memory available on the GPU device, yield-
ing an average speed-up of 5.16 times. Addi-
tional investigations using other values for s
(not shown) yielded comparable patterns, sug-
gesting that results are scalable and that sim-
ilar improvements can be achieved for larger
problems.

● ●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

● ●
●

●
●

●

10−2

10−1

100

101

102

0 5000 10000 15000
Matrix size

S
ys

te
m

 ti
m

e 
(s

ec
s)

● GPU

GPUB

CPU1

CPU4

Figure 3. Times for matrix inversion

Corresponding results for matrix inversion
are presented in Figure 3. For this case, par-
allelisation was slightly less successful with
computations using a single CPU for n > 4000
requiring on average 3.33 times as long as
those utilizing all 4 cores available. For small
matrices, processing on the GPU required
longer than CPU1. For n > 4000, single block
computations on the GPU performed best, re-
ducing computing times by factors of 4.14
and 1.23 compared to CPU1 and CPU4, re-
spectively. However, memory available on the
GPU restricted these to n < 15000. Block-
wise inversion on the GPU required similar
times than using all CPU cores available in par-
allel. Other sizes of nb were tried (not shown),
but offered little advantage – indeed for small
block sizes, times exceeded those for CPU1.
Benner et al. (2011) reported greatly increased
speeds of computation for their algorithm compared to LAPACK routines, both for parallel computa-
tions on the CPU and a hybrid approach, while calculations on the GPU only required matrix sizes of
more than 7,000 to be advantageous. Nevertheless, none of their findings could be repeated with our
hardware set-up.

DISCUSSION
Dense matrix calculations are computationally demanding and the efficiency of computations

is greatly influenced by the organisation of loops and memory access. Highly optimised linear

Proc. Assoc. Advmt. Anim. Breed. Genet. 20:270-273

272



algebra routines are available which perform common types of operations and, together with modern
compilers and libraries tuned for specific hardware, can yield very fast computations. These routines
are freely available and easy to use and, where possible, should be used when programming such
applications.

Moreover, corresponding libraries are available to readily utilise multiple (CPU) or very many
(GPU) threads. As shown, performing computations in parallel can markedly speed up calculation
of the GRM and its inversion. While the advantages of using the GPU over all CPU cores available
shown here might appear modest, it should be born in mind that the graphics card utilised only
had very basic GPU capabilities. Hence, results should be regarded more as a ‘proof of principle’
rather than being indicative. Modern GPUs targeting general purpose computing have up to 6 Gb
memory and thousands of cores, and are capable of performing double precision calculations with
huge numbers of floating point operations per second, effectively turning a standard desktop computer
into a personal supercomputer. Future work will repeat the calculations shown with more powerful
hardware, and is likely to achieve substantially higher reductions in computing time for calculations
that can be accelerated using the GPU.

CONCLUSIONS
Utilisation of multiple threads can dramatically reduce computing times for dense matrix cal-

culations, such as required in the context of genomic evaluation. Graphic Processing Units provide
powerful hardware for parallelisation of computations, and are likely to see increasing use in animal
breeding applications in the future.

ACKNOWLEDGEMENTS
This work was supported by Meat and Livestock Australia under grant B.BFG.0050.

REFERENCES
Aguilar I., Misztal I., Legarra A. and Tsuruta S. (2011) J. Anim. Breed. Genet. 128:422.
Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum

A., Hammarling S., McKenney A. and Sorensen D. (1999) LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, Third edition.

Benner P., Ezzatti P., Quintana-Ortí E.S. and Remón A. (2011) In International Conference on High
Performance Computing and Simulation (HPCS). IEEE, pp. 640–646.

Cole J.B., Newman S., Foertter F., Aguilar I. and Coffey M. (2012) J. Anim. Sci. 90:723.
Dongarra J., Dong T., Gates M., Haidar A., Tomov S. and Yamazaki I. (2012) In SC12. Salt Lake

City, Utah, November 14, 2012.
Dongarra J.J., Croz J.D., Hammarling S. and Hanson R.J. (1988) ACM Trans. Math. Softw. 14:1.
Ezzatti P., Quintana-Ortí E.S. and Remón A. (2011) J. Supercomput. 58:429.
Humphrey J.R., Price D.K., Spagnoli K.E., Paolini A.L. and Kelmelis E.J. (2010) In Modeling and

Simulation for Defense Systems and Applications V, E.J. Kelmelis, ed., Proc. SPIE 770502.
Meyer K., Tier B. and Graser H.U. (2013) J. Anim. Sci. 00:000.
NVIDIA Corporation (2013) CUDA parallel programming platform. http://www.nvidia.com/
object/cuda_home_new.html. Accessed: February 1, 2013.

Quintana E.S., Quintana G., Sun X. and van de Geijn R. (2001) SIAM J. Sci. Comput. 22:1762.
Van Raden P.M. (2008) J. Dairy Sci. 91:4414.

Genomic Selection – relationships

273

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html



