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SUMMARY 
We investigate a way to reduce phenotyping cost with an approach that uses a differential 
evolution algorithm to optimize which sets of animals to phenotype. The “fitness function” to 
optimize was the average accuracy of selection candidates (prediction error variance covariance 
function) when phenotyping 15 animals of four small illustrative pedigrees (different family 
structure, balanced and unbalanced family sizes). We compared these results to three other 
strategies (random phenotyping, 15 selection candidates and sires and 12 selection candidates) for 
different heritability. The tactical approach was either the best strategy or shared highest position 
on the podium with an equally performing strategy. Phenotyping patterns are impacted by 
heritability, family structure and family size. This tactical approach to phenotyping is a first step 
towards a tool that can more generally help decide which animals should be phenotyped or 
genotyped to optimize breeding programs. 
 
INTRODUCTION 

Some traits which impact on profit are not routinely recorded for genetic evaluation or 
evaluated through a correlated trait, such as traits that are difficult to record (e.g. carcass traits) 
and/or expensive to measure (e.g. methane emission of cattle). A strategy that reduces costs of 
phenotyping would allow the integration of valuable novel traits and reduces the cost of 
implementing genomic selection for some species (i.e. sheep, beef cattle). 
We investigate in this paper an approach to manage total cost of phenotyping. The objective of our 
approach is to find the best set of animals to phenotype for a given number of phenotypes that 
maximises the EBV accuracy for selection candidates. The total number of phenotypes to be 
measured will be dictated by the financial resources of the breeder or farmer. We used a 
differential algorithm to find the set of animals to phenotype that incur the highest average 
accuracy. The fitness of the solution was evaluated by an objective function that calculated the 
average accuracy of selection candidates based the prediction error variance covariance (PEVC) 
given by the traditional best linear unbiased prediction method (BLUP, Henderson 1984).  Using 
four simple pedigrees, we investigate the phenotyping patterns of optimal average accuracy of 
selection candidates that results from our tactical approach (depending on family structure and 
family size) when phenotyping 15 animals. We also compared our approach to three others 
phenotyping strategies (phenotyping random animals, only selection candidates or sires and 
selection candidates).  
 
MATERIAL AND METHODS 

Phenotyping approach. To find which animals should be phenotyped given a maximum 
number, we used a differential evolution algorithm (DE, Price and Storn 1997), that judges on the 
fitness of solutions by maximizing accuracy obtained through the fitness function described below. 
The DE is set up with a population of 10 solutions that evolved for a maximum of 100,000 
generations. Two other criteria can stop the evolution prematurely when they have been all met: 
the DE run for at least 1000 generations without any improvement and solution has to exceed 
99.5% of current predicted asymptotic maximum solution (see Kinghorn 2008 for full description). 
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Fitness function. The fitness function establishes the average accuracy of selection candidates 
given a set of animals to phenotype for the simple case of a single trait with no fixed effects. The 
prediction error variance-covariance corresponds to the inverse of the left hand side of the mixed 
model equations used in traditional BLUP genetic evaluation: 

𝑃𝐸𝑉𝐶𝑖 =  𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑍′𝑍 +  𝜆𝐴−1)−1 × 𝑀𝑆𝐸 
where Z is the matrix that contains information on which animals is phenotyped, A is the 
relationship matrix and 𝜆 =  1− ℎ2

ℎ2
. MSE represents the mean squared error, assumed to be 1. 

Individual accuracy was then calculated as: 
𝑟𝐼𝐻𝑖 =  �1 − 𝜆𝑃𝐸𝑉𝐶𝑖  

The value maximized by the fitness function was the average accuracy of selection candidates. 
 Pedigrees. We designed 4 representative pedigrees with specific characteristics to evaluate 

our approach for common population structures found in animal breeding. The pedigrees are 
described in Table 1. They all comprise 3 generations and the last generation (offspring) 
represents selection candidates. We investigated the impact of different family structure (half-sib 
and full-sib), of balanced and unbalanced family sizes. Family sizes in the unbalanced pedigrees 
are 2 (small family), 10 (medium family), and 18 (large family) offspring. We looked at the 
particular cases of phenotyping 15 animals which corresponds to half of the selection candidates 
and for three heritabilities of 0.1, 0.5 and 0.8 (TACT strategy). We also examined the accuracy 
when phenotyping 15 animals randomly across generations (RAND strategy), phenotyping 15 
selection candidates randomly (OFFS strategy) and phenotyping the sire of each family and 12 
random offspring (SIRE strategy) for each pedigree and each heritability (0.1, 0.5 and 0.8). 
 
Table 1. Illustrative pedigrees family structures  
 

 Structure # GP # sires # dams # offspring Family size 
PED1 HS 66 3 30 30 10 10 10 
PED2 FS 12 3 3 30 10 10 10 
PED3 HS 66 3 30 30 2 10 18 
PED4 FS 12 3 3 30 2 10 18 

 
RESULTS AND DISCUSSION 

Table 2 reports the percentage of maximum accuracy achieved by the four different 
phenotyping strategies. As expected, RAND was the least efficient strategy.  Out of the 12 
scenarios, TACT always performs best. In 2 cases, TACT was equivalent to OFFS (PED2 
heritability of 0.5 and 0.8) and in 2 cases equivalent to SIRE (PED1, heritability 0.1 and 0.5). This 
indicates that our tactical approach found the best strategy, which also happened to be one of other 
strategy. Figure 1 shows the distribution of phenotypes for the families when phenotyping 15 
animals in PED1 to PED4 for heritability of 0.1, 0.5 and 0.8 using the TACT approach. We are 
considering three factors that impact on the phenotyping pattern given a fixed number of 
individuals to phenotype and a fixed number of selection candidates: heritability, family structure 
and balanced/unbalanced family size.  
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Table 2. Percentage of maximum accuracy (when all animals are phenotyped) captured 
when phenotyping 15 animals for PED1 to PED4 for heritability of 0.1, 0.5 and 0.8 with 
TACT, RAND, OFFS and SIRE phenotyping strategies 
 

 Heritability TACT RAND OFFS SIRE 
 0.1 63 33 51 63 
PED1 0.5 69 38 60 69 
 0.8 72 40 62 69 
 0.1 73 63 71 69 
PED2 0.5 84 75 84 80 
 0.8 84 76 84 80 
 0.1 66 32 61 64 
PED3 0.5 71 40 69 69 
 0.8 73 42 70 71 
 0.1 77 67 75 73 
PED4 0.5 85 77 84 82 
 0.8 85 77 82 81 

 
Optimal phenotyping patterns vary with heritability except for the case of PED2. We can also 

observe difference in optimal phenotyping pattern when the structure is different. For example, for 
the same heritability of 0.1, TACT recommends to phenotype 1 sire and 4 offspring per family 
with a half-sib structure (PED1), while it recommends to phenotype 5 offspring per family with a 
full-sib structure (PED2). Finally, we can note that phenotyping patterns are different between 
balanced and unbalanced family sizes (e.g. PED2 and PED4). Phenotyping patterns are clearly 
impacted by family structure, heritability and family size. 

We also use the tactical approach with a pedigree of 50 half-sib families of various sizes (3-16) 
for 3 heritabilities and phenotyped patterns observed were similar to the ones described in Figure 1 
for PED3. The phenotyping approach is a useful tool to find the best set of animals to phenotype 
for a given number of phenotypes. The advantage of such an approach is that accuracy is only 
slightly lower, while cost of phenotyping can be significantly reduced. This could permit the 
inclusion in the breeding goal of new traits that are expensive to measure, including genotyping. In 
this study, we maximized accuracy of the youngest cohort of selection candidates, as it affects 
short term response. Genetic gain is impacted by accuracy, as well as generation interval. 
Increasing accuracy of younger animals tends to   reduce the generation interval and therefore 
increases genetic gain. Optimal response in the longer term is obtained when genetic diversity is 
also considered.  Phenotyped animals are more informative and are more likely to be selected for 
the next generation and phenotyping many related animals is more likely to increase inbreeding  
Constraints on inbreeding  as used in  optimum contributions selection (Sonesson and Meuwissen 
2000) can also be added to the tactical phenotyping approach described here.  A further step is to 
extend the tactical approach to phenotyping to a multi-trait case, and subsequently to include 
genotyping for the case of gnomic selection.  Further work will also address the need to reduce the 
computational time e.g. by using approximate accuracies (Meyer 1989) for larger pedigrees. 
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Figure 1. Optimal phenotyping patterns for PED1, PED2, PED3 and PED4 when 
phenotyping 15 animals for heritability 0.1 (black), 0.5 (grey) and 0.8 (white). Si refers to sire 
of family i, Oi refer to offspring of family i.   
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