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SUMMARY 

To date genomic prediction (GP) of breeding values  in cattle generally exploits either ~50K or 
~800K SNP chips. Now that whole genome sequence data is also available, it is important to 
evaluate its potential to improve the accuracy of GP. SNP chips include only more common SNP 
while sequence data includes rare and common SNP as well as all causal mutations (QTL). It is 
expected that sequence data will improve accuracy of GP particularly if QTL are rare because they 
have been under long-term negative selection. This study evaluates accuracy of GP using sequence 
data compared with the equivalent of ~800K or ~50K SNP densities. Accuracy of GP was tested in 
simulated populations (mimicking Holstein cattle) with and without long-term negative selection 
acting on QTL. GP was implemented with both BLUP (GBLUP) and Bayesian (BayesR) methods. 
There was not a very marked difference between GP accuracy in scenarios with neutral QTL or 
selected QTL because the recent low effective population size (Ne) of cattle decreased the 
proportion of rare causal mutations compared to expectations in larger Ne. Only the BayesR 
method was able to exploit an advantage from sequence data. We conclude that combining data 
from more than one breed in training (reference) populations and using Bayesian analyses, will 
take better advantage of sequence data for GP than using single breed and GBLUP analyses.  

 
INTRODUCTION 

Genomic prediction (GP) of breeding values is an efficient method of selecting livestock for 
traits that are difficult to measure, or traits not expressed in males (Meuwissen et al. 2001). To 
date GP in cattle generally exploits either ~50K or ~800K SNP chips, but soon whole genome 
sequence data (direct or imputed) could also be used to improve accuracy of GP. The advantage of 
sequence is that it contains the causal mutations. Furthermore, SNP chips include only common 
SNP and these may not be in high linkage disequilibrium with causal mutations if the latter are 
rare because they have been subject to long-term negative selection. In this case SNP chips will 
not be able to accurately estimate the QTL effects. It is therefore expected that sequence data will 
improve accuracy of GP, particularly if causal mutations have been under long-term negative 
selection.  

Using a bovine-like neutral model to simulate data, Clark et al. (2011) demonstrated a 5-15% 
advantage for accuracy of GP using sequence compared to 50K SNP chip densities, but did not 
include a comparison with 800K SNP density. Druet et al. (2013) indirectly estimated the potential 
effect of long term negative selection on GP by simulating QTL effects on a subset of loci with 
low or very low minor allele frequencies (MAF). They demonstrated a 4-28% advantage in 
accuracy of GP using sequence data compared to 50K SNP densities, but did not test 800K SNP 
density. Although it can be argued that simulating QTL on rare mutations mimics the expected 
effect of long term negative selection, the approach may not reflect the true MAF distribution of 
loci actually subjected to long-term negative selection because demography also shapes the MAF 
distribution. For example, in populations with recent bottlenecks in effective population size (Ne), 
mutations with a deleterious effect on fitness are more likely to be lost, but may also sometimes 
rise to higher frequencies due to drift, compared to populations with large or expanding Ne. Using 
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simulations of bovine populations, we evaluate the accuracy of GP using sequence data, ~800K or 
~50K SNP chip densities, with and without long term negative selection applied to QTL.  

 
MATERIALS AND METHODS 

We simulated sequence data with FREGENE (Chadeau-Hyam et al. 2008) using a 
demographic model demonstrated to mimic Holstein sequence data (Macleod et al. 2013), in 
which the effective population size (Ne) reduces from ancestrally very large to very small in recent 
times. For computational efficiency we simulated a genome size of 50Mb under the scaling 
argument demonstrated by Meuwissen & Goddard (2010): i.e. GP accuracy is proportional to the 
number of training individuals/Morgan (M) length of the genome. Therefore to achieve similar 
accuracies with a ~30M bovine genome, the training population size would need to increase by a 
factor of ~60. Simulations were either a neutral model (NEUT) or with long-term negative 
selection imposed on QTL (SEL). In the SEL model, 0.1% of new mutations were subject to an 
additive selection coefficient: s = -2x10-4, and those still segregating at the end of the simulation 
were used as QTL. In both NEUT and SEL scenarios we simulated 20 replicates, each with 5000 
individuals.  

We created a “Medium Density” (MD) and “High Density” (HD) SNP panel for each replicate, 
by selecting a subset of 1000 and 10,000  SNP loci respectively: representing a density of 60K and 
600K SNP across the whole bovine genome (the latter is equivalent to an 800K SNP panel because 
often after quality control in real data there are ~600 usable SNP). To mimic the ascertainment 
bias of commercial panels, SNP were only selected if MAF > 0.1 and SNP positions were then 
selected uniformly at random. We generated HD and MD SNP genotypes for all individuals in 
addition to the sequence data (SEQ). For each replicate, additive QTL effects were simulated from 
a normal distribution with two different QTL densities: number of QTL=50 or 15. In the NEUT 
populations, QTL were randomly selected from SNP loci, while in SEL scenarios the QTL were 
chosen from polymorphic loci subjected to selection. In 5 of the 20 replicate SEL populations, 
there were only 49, 47, 46, 46 and 41 selected loci still segregating, therefore for the scenario with 
QTL=50 the remaining QTL were drawn from neutral loci with MAF < 0.1. QTL effects were 
summed to give True Breeding Values (TBVj) for each individual. Phenotypes were generated by 
adding a residual term to the TBVj of each individual, drawn from a normal distribution to produce 
a trait heritability of 0.1. We randomly selected 3750 “training” individuals to calculate the 
genomic prediction equations (using genotypes and phenotypes). We used the remaining 1250 
individuals from the same population (genotypes only) to validate the prediction equations 
(Gen=0, “validation” individuals). After both 10 and 15 further generations of random breeding, 
genotypes were again sampled for 2000 validation individuals (Gen=10 and Gen=15 validations).  

We implemented both GBLUP and BayesR analyses to generate Genomic Estimated Breeding 
Values (GEBV). GBLUP was implemented in ASReml (Gilmour et al. 2005): y = μ1 + Zg + e, 
where μ is the population mean, 1 is a vector of 1s, Z is the incidence matrix for random individual 
effects. The g and e are vectors of GEBV and residuals, assumed normally distributed as N(0, 
Gσ2

g) and N(0, Iσ2
e), where G is the genomic relationship matrix (GRM) estimated either from 

MD, HD or SEQ genotypes (eg. Erbe et al. 2010). Our BayesR implementation (Erbe et al. 2012) 
omitted a polygenic effect because individuals were randomly bred with no close pedigree 
structure:  y = μ1 + Wu + e,  where μ is the mean, e is the vector of random residuals and W is the 
design matrix allocating records to the vector of marker effects, u. The accuracy of GP was 
determined as the correlation between the GEBVj and the TBVj in i=1…N validation individuals, 
averaged the across the 20 replicate simulations for each scenario.  

 
RESULTS AND DISCUSSION 

The marked reduction in recent effective population size (Ne) used in our simulation to mimic 
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the Holstein breed demography, resulted in a relatively flat derived allele frequency (DAF) 
distribution for neutral alleles compared to the expectation in a larger constant or expanding Ne. 
The recent reduction in Ne results in random drift very quickly purging low frequency loci as well 
as increasing linkage disequilibrium (LD) compared to larger Ne. Among neutral loci in our 
simulations, 19% had DAF < 0.1 while this figure increased to 31% for loci subjected to long term 
negative selection. This indicates that selection had a significant impact on allele frequency 
distribution while not being so strong as to immediately purge new mutations. The impact of the 
selection coefficient (s) is generally significant if: |sNe| >> 1 and in our large ancestral bovine 
population |sNe| = 12 which is similar to some estimates in humans (Keightley & Halligan 2009).  

Fig 1A shows the results for the realised accuracy of GP when the number of QTL=50 
(equivalent to ~3000 QTL affecting a trait genome wide) while results in Fig 1B are for QTL=15 
(equivalent to 900 QTL genome wide). QTL densities were chosen to reflect realistic models 
based on recent mammalian estimates (eg. Kemper et al. 2012). In all scenarios there was an 
advantage for sequence (SEQ) over MD SNP (up to 11.8%) as for previous studies (Clark et al. 
2011, Meuwissen & Goddard 2010, Druet et al. 2013), particularly with BayesR and an increasing 
number of generations separating training and validation populations (Gen=10 and 15). With 
GBLUP analyses there was generally no advantage for SEQ compared to HD SNP, except in the 
SEL scenario with QTL=15. With BayesR there was a modest advantage for SEQ over HD SNP 
(up to 3.6%), particularly in the Gen=15 validation and was consistently higher in SEL compared 
to NEUT scenarios. Furthermore, there was less decay in the BayesR accuracy compared to 
GBLUP when the number of generations separating training and validation individuals increased. 

 

 
 
Figure 1A and B. Genomic prediction accuracy in populations with QTL under a neutral 
(NEUT) or negative selection model (SEL), using GBLUP or BayesR analysis, with two 
contrasting QTL densities: number of QTL=50 (A) or QTL=15 (B). Zero, 10 or 15 
generations separated training and validation individuals (Gen=0, 10 or 15). 

 
GBLUP assumes a quasi infinitesimal model with each sequence SNP assumed to contribute 

an additive effect sampled from a single normal distribution. BayesR method could be expected to 
perform better with sequence data because it sets a prior expectation that many SNP will have no 
effect, while the remaining effects will be sampled from a mixture of distributions, with many 
small effects and up to some rare large effects. However the recent reduction in Ne within Bos 
taurus cattle breeds has resulted in high (but variable) LD across relatively long chromosome 
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segments and therefore GBLUP will tend to “spread”  the estimate of each QTL effect across a 
number of loci on chromosome segments in which SNP are in high LD. We estimated the number 
of “effectively independent chromosome segments” (Me , see  Goddard 2009) is  ≈ 85 on our 50 
Mb genome. Therefore, when the number of QTL=50, GBLUP works as well as BayesR in 
Gen=0, because nearly all segments contain a QTL and so the prior assumption that chromosome 
segment effects are normally distributed is approximately correct. Also, when animals are 
relatively closely related (Gen=0) there was no advantage for SEQ because HD and MD SNP are 
dense enough to predict the QTL effects given the low Me.  

Although BayesR analysis estimates an effect for each SNP with many set to zero, the method 
still has difficulty defining which SNP within a segment of high LD is the true QTL, and several 
SNP effects are estimated as contributing to part of the QTL effect, particularly with dense SNP. 
With QTL=15 the BayesR method showed an advantage over GBLUP even in Gen=0, and in all 
scenarios the advantage of BayesR becomes more pronounced in Gen=10 and 15. This implies that 
even with many SNP in high LD, BayesR is superior to GBLUP in accurately attributing SNP 
effects to a more precise chromosome region harbouring the real QTL. Recombination is therefore 
less likely to occur between the true QTL and the SNP to which BayesR has attributed part of the 
QTL effect and accuracy of GP is more persistent across generations. The decay in accuracy is 
more rapid with GBLUP than BayesR because more SNP effects over longer segments are 
contributing to predicting the individual QTL effects and therefore there is a much higher chance 
that recombination will disrupt the LD between QTL and SNP alleles.  

Druet et al. (2013) tried to indirectly estimate the effect of negative selection on accuracy of 
GP by simulating QTL only on loci with MAF<0.1 compared to their neutral model allocating 
QTL randomly across all loci. They observed ~10% reduction in SEQ accuracy of GP with 
BayesR when QTL MAF<0.1. However, our simulation demonstrates that the MAF distribution of 
QTL subjected to long term negative selection is unlikely to be as extreme as assumed in Druet et 
al. (2013). There was a consistent reduction in the accuracy of GP due to the effect of selection, 
but only when there were 10 or more generations separating the training and validation 
populations. If a gamma distribution of QTL effects had been used in this study, the difference 
between BayesR and GBLUP accuracies might have been more pronounced, particularly when the 
number of QTL=15 because this is closer to BayesR assumed distribution of QTL effects. 
However no further differences in the results would be expected.  

To gain more advantage from sequence, we conclude that training data should be combined 
from more than one breed to reduce the LD between more distant SNP (equivalent to an increase 
in the Ne). This will also require an increase in the size of training populations but should ensure 
better persistency of GP accuracy across generations with SEQ, provided that a reasonable 
proportion of QTL are segregating in both breeds. It is also likely to be more beneficial to use a 
Bayesian analyses and to select a subset of potentially more biologically active SNP from 
sequence data prior to analysis. 
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