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SUMMARY  

Comparisons of genome-wide association studies (GWAS) based on imputed and actual 
genotypes were made using a dataset of 2,205 dairy bulls genotyped with a 50K SNP chip. The 
animals were divided into a reference (25 %) and a test panel (75 %). The genotypes of the test 
animals specific to two commercial lower density chips (i.e. 3K and 7K) were imputed up to the 
50K using the IMPUTE2 software. The ‘best guess’ genotypes and allele dosages (estimated 
number of copies of an allele) were used as imputed genotypes. The association of SNP genotypes 
with phenotypes were conducted on five dairy traits (viz. milk yield, fat yield, protein yield, 
survival and daughter fertility) using true and imputed 50K genotypes of the test animals. The 
accuracy of imputation had a clear impact on the ability to detect the significant associations but 
varied between the 3K and the 7K, and among the five traits. The allele dosage model was superior 
to the best-guess model. Filtering the SNPs based on an indirect indicator of accuracy of 
imputation significantly improved the repeatability of GWAS results obtained from the imputed 
genotypes. Overall our results show that imputed genotypes can be used effectively to increase the 
power of GWAS.  
  
INTRODUCTION  

A number of SNP chips varying in SNP density and cost are available for genotyping cattle. 
For the dairy industry, an attractive strategy to increase genotypic information in a population 
whilst keeping cost of genotyping down is to genotype a large number of animals with a cheaper 
low-density SNP chip and impute up to high density genotypes using a limited number of 
reference animals genotyped with a high-density SNP chip (Khatkar et al. 2012).  In addition to 
the primary utility of using imputed genotypes for genomic selection, such high-density imputed 
SNP genotypes on a large number of animals can boost the power of genome-wide association 
studies (GWAS) and fine-mapping of causal variants (Marchini and Howie 2010). GWAS rely on 
linkage disequilibrium (LD) between genotyped SNPs and causal mutations and hence benefit 
from the availability of very high-density SNP panels genotyped on large numbers of animals. In 
addition, genotype imputation is becoming a popular approach for combining multiple resource 
populations genotyped using different SNP panels, especially for meta-analysis (de Bakker et al. 
2008; Jiao et al. 2011).  

Imputation of genotypes is generally achieved with some uncertainty which may affect the 
ability to detect SNP associations.  A number of studies have examined the accuracy and utility of 
imputed genotypes for GWAS in human (Marchini and Howie 2010). However, to our knowledge 
no study has been undertaken in livestock. The population structure, traits and density of the SNP 
panels in use in livestock are quite different from those in human. Such an analysis would provide 
useful information for conducting GWAS on imputed genotypes in cattle. Here we compared  
GWAS based on imputed and actual genotypes using a dataset of dairy cattle genotyped with a 
50K SNP chip. We compared two types of imputed genotypes viz. ‘best guess’ and ‘allele dosage’, 
and investigated the effect of imputation accuracy on the repeatability of SNP association tests.  
  
MATERIAL AND METHODS  

Data. A total of 2,205 bulls genotyped with the Illumina BovineSNP50 chip were used in this 
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study (Khatkar et al. 2012). After filtering the SNP for low minor allele frequency (MAF>1%) and 
other QC measures, a total of 41,864 SNPs mapped on autosomes on UMD3.0 were used in this 
study.  

Imputation. The 2,205 animals were divided into a reference (25 %) and a test panel (75 %).  
The 550 animals in the reference panel were selected randomly from the animals born before 2001 
and all remaining animals were included in the test panel.  For the reference panel, all the 50K 
genotypes were used. For the test panel a subset of the 50K SNP genotypes specific to two 
commercial lower density chips, viz. 3K (Wiggans et al. 2012) and 7K (Boichard et al. 2012), 
were used. Most of the SNPs on the 3K and the 7K chips are present on the 50K chip.  The 
genotypes of the test animals were imputed up to the 50K using the genotypes of the reference 
animals. IMPUTE2 version 2.1.2 (Howie et al. 2009) was used for imputation. The ‘best guess’ 
genotype and the allele dosage were used as imputed genotypes. Allele dosage is the expected 
count of the B-allele. 

Accuracy of imputation. Correlations between the actual and imputed genotypes were 
computed for each SNP by coding the AA, AB, BB genotypes as 0, 1, 2. In addition mean allelic 
error rates for the imputed genotypes were computed as the percentage of incorrectly predicted 
alleles i.e. mean allelic error rate (%) = number of incorrectly predicted alleles / total number of 
alleles imputed in the test set × 100.   

SNP association. Association of SNP genotypes with five dairy traits (daughter trait 
deviations, DTD) were computed using the actual 50K and imputed 50K genotypes of the test 
animals.  The five traits analysed were milk yield, fat yield, protein yield, survival and daughter 
fertility index which reflect a range of heritabilities. The regression of the traits on SNP genotypes 
were conducted by fitting the SNP allele count or allele dosage as a covariate and animal additive 
genetic effect as a random effect in a linear mixed model using ASReml (Gilmour, 2009). In 
addition each observation was weighted with the accuracy of DTD of each bull. The correlation of 
–log10(p-values) obtained by original 50K vs. imputed 50K was taken as the accuracy/ 
repeatability of GWAS on imputed genotypes for each trait.  
  
RESULTS AND DISCUSSION  

Overall agreement of SNP genotype association with milk volume as obtained using original 
and imputed genotypes i.e. best guess genotypes and allele dosage is presented in Figure 1. These 
results are based on imputed genotypes obtained by using the 3K SNP chip on the test animals. 
The repeatability of the p-values obtained using imputed allele dosage (0.92) was higher than the 

repeatability using best guess genotypes 
(0.89). Similar results were observed for other 
traits and when using the 7K SNP chip (results 
not shown). Higher repeatability using allele 
dosage could be expected as the probabilities 
of calling correct genotypes by imputation are 
included in the computation of allele dosage.   
 
Figure 1. The repeatability of SNP 
associations with milk volume using 
imputed genotypes. The values in the upper 
triangle are Pearson correlation coefficients 
between -log10(p-values) using respective 
genotypes.  
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 The results presented in Table 1 show further details on the repeatability of SNP association 
with phenotypes, where SNP genotypes were allele dosages from imputation. The correlation 
between -log10 of p-values varies from 0.84 to 0.92 across five traits. To examine the effect of 
accuracy of imputation on repeatability of association, the SNPs were classified according to their 
imputation accuracy. The SNPs with imputation accuracies less than 0.75 have low repeatability 
(Table 1). These results suggest that imputed genotypes of the SNPs with high error rate may not 
be useful for GWAS.  
 
Table 1. The agreement of p-values for GWAS for five different traits obtained using actual 
genotypes and imputed genotypes (allele dosages) 
  
Imputation 
accuracy 
(range)  

n snp MAER  Imputation 
accuracy 

Repeatability of p-values 
Milk 

volume Fat Protein Direct 
survival 

Cow 
fertility 

ALL  39226  3.589  0.902 0.918 0.904 0.879 0.835 0.841 
0.0-0.5  87  12.943  0.345 0.120 -0.04 0.104 0.227 0.366 
0.5-0.75  1025  5.108  0.688 0.529 0.476 0.586 0.569 0.526 
0.75-0.9  12484  4.786  0.857 0.860 0.821 0.808 0.757 0.779 
0.9-0.95  19971  3.246  0.927 0.945 0.932 0.912 0.865 0.878 
0.95-1.0  5659  1.738  0.963 0.947 0.951 0.946 0.934 0.927 
 

Imputation accuracy is the correlation coefficient between imputed dosage and true genotypes;  Repeatability 
of p-values = cor(-log10(p-values- actual), -log10(p-values- imputed));  MAER = mean allelic error rate (%).  
  

The accuracy of the imputation of untyped SNPs cannot be estimated in the absence of any true 
genotypes for comparison. However, it is possible to have some indication of quality of imputed 
genotypes.  Browning and Browning (2009) suggested using the Pearson correlation between best 
guess and allele dosage as an indicator of accuracy of imputation. Figure 2 shows the relationship 

of this indicator with the 
accuracy of imputation.  These 
results suggest that a large 
proportion of the SNPs with low 
accuracy of imputation can be 
filtered out by using the 
correlation between best guess 
and allele dosage as indirect 
measures. Such a filtering step 
can significantly improve the 
results of GWAS obtained from 
imputed genotypes.    
   
Figure  2. The relationship of 
correlation between allele 
dosage and best guess (x-axis) 
with the accuracy of 
imputation (y-axis; correlation 
between dosage and true 
genotypes).  
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The main motivation for undertaking a GWAS is usually to identify signals for causal variants 
or SNP in LD with such variants.  Because of high LD between SNPs, especially when high-
density SNP chips are used, true signals are generally represented by multiple SNPs in the region. 
The repeatability of individual SNPs from imputed genotypes is variable as discussed above, 
however, when the number of SNPs in a sliding window was used to detect the signal, the 
repeatability of signals using imputed GWAS was higher (results not shown).   

Low MAF also affects the accuracy of imputation (Khatkar et al. 2012) and hence accuracy of 
association in GWAS. We excluded all SNPs with a MAF less than 1%. Excluding SNPs with 
very low MAF and filtering with the indicator of accuracy of imputation (Figure 2) can improve 
the GWAS results obtained from imputed genotypes.  

We only tested the additive genetic effect of the SNP allele. It is possible to use the data on the 
cows to estimate the dominance effect by contrasting the mean of three genotypes. Such analysis 
will require using best guess imputed genotypes. With the availability of different SNP panels for 
bovine, it is becoming common place to genotype the same or different resource populations with 
different SNP chips. Imputation can help to combine such datasets.  Recently we showed that the 
genotypes of animals can be imputed from 50K to 800K with a very small loss of accuracy of 
imputation (Khatkar et al. 2012).  Such high-density imputed datasets will provide resources to 
conduct very powerful GWAS whilst maintaining the cost of genotyping at a low level.  
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