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SUMMARY 

Combining information from different cattle breeds is a potential way to improve the accuracy 
of genomic estimated breeding values (GEBVs) by increasing the size of the reference population. 
However, the phase of linkage disequilibrium between SNPs and quantitative trait loci for traits 
such as residual feed intake (RFI) may vary from one breed to another, which would erode the 
value of combining breeds. RFI is a selection criterion for feed efficiency and is the difference 
between actual intake and expected intake for maintenance and production. The aim of this 
research was to evaluate the accuracy of GEBVs when RFI records were combined from 5,614 
animals of different breeds including 842 Holstein heifer and 2,009 Australian beef cattle (1,134 
Angus, 217 Herford, 79 Murray Grey and 579 Shorthorn) and 2,763 Canadian beef cattle (534 
Angus, 384 Charolais and 1,845 mixed synthetic breed) and their genotypes (606,096 SNPs) were 
used. We estimated the variance explained by the SNPs and the variance explained by SNP x breed 
interactions. The model with the highest likelihood was when SNP effects within two groups of 
breeds in addition to pedigree was fitted. The first group comprised Holsteins and the Angus cattle 
from the Trangie Research Station in NSW, Australia and the second group included all the other 
cattle. The difference between these two groups is that the cattle in group 1 were measured for RFI 
on a pelleted diet shortly after weaning while those in group 2 were measured on a feedlot diet at 
>1 year of age. According to the best model, the SNP effects were not significantly different 
between the two breeds fed a similar diet and measured at a similar age. However, the SNP effects 
differed between groups that were fed different diets and measured at different ages. The GEBVs 
of the validation animals were calculated using their SNP genotypes and the estimated SNP effects 
and correlated with their actual RFI phenotypes to estimate the accuracy of the GEBV. The 
average accuracy was 0.31 which was near to expected from the BLUP equations (0.34). Thus an 
across breed reference population appears to be promising for genomic prediction of RFI provided 
the animals are at about the same age and on a similar diet. However, there is only a small increase 
in accuracy by adding animals of another breed because the relationships between animals in 
different breeds are low. The BLUP equations correctly predict this limited increase in accuracy. 
 
INTRODUCTION 

Residual feed intake is an important trait relevant to feed efficiency in beef and dairy cattle but 
it is difficult to improve genetically because it is expensive to measure (Arthur et al. 2004). It is 
hoped that genomic selection using DNA markers might be used to achieve genetic improvement 
in RFI. Since the introduction of genomic selection (Meuwissen et al. 2001) there has been much 
research into the accuracy with which genomic estimated breeding values (GEBVs) predict true 
breeding values. The most common method to estimate the accuracy of GEBV has been to put 
aside a proportion of the population (a validation group) and not use them in the estimation of SNP 
effects. Then the estimated SNP effects are used to calculate GEBVs for the excluded animals 
which are then correlated with their phenotypic records. This correlation is the accuracy with 
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which the GEBVs predict new phenotypes. This method has several disadvantages. For instance, 
accuracies (r) or reliabilities (r2) are not available for individual animals. When conventional 
BLUP is used to predict breeding values, the reliabilities of individual EBVs are calculated from 
the BLUP equations and it would be useful if this could also be done for GEBV but to date this 
approach is not well accepted. Theory and experimental results show that the reliability of GEBVs 
depends mostly on the precision of phenotypic data and number of genotyped animals in the 
reference population (VanRaden 2009). One way of increasing the number of individuals with 
phenotypes and genotypes is using a multi-breed reference population. However, the gain in 
accuracy from multi-breed reference populations has been found to be low, although a convincing 
explanation for this finding has not been offered.  Three possible explanations are: 1. the effect of 
a quantitative trait locus (QTL) varies from breed to breed (i.e. breed x QTL interaction). This 
could be due to a true interaction between breed and the QTL or to an interaction between QTL 
and the way the trait was measured in different breeds (e.g. at different ages). 2. the linkage 
disequilibrium (LD) between the QTL and the SNPs that are assayed varies between breeds. 3. the 
across breed LD is low and limited to SNPs very close to the QTL so that there is limited 
information which can be transferred across breeds.  The first two reasons result in a breed x SNP 
interaction. The LD between SNPs and QTL is only likely to be consistent across breeds for SNPs 
very close to the QTL and therefore we need very dense markers. In this research we have used 
around 700,000 SNPs which should be dense enough because LD phase is conserved across breeds 
at distances of 5 kb (deRoos et al. 2009). The aim of this research is to explain the accuracy of 
GEBV for RFI using a multi-breed reference population and to assess if using prediction error 
variances (PEVs) of GEBVs from the BLUP equations can correctly predict the accuracy. 
 
MATERIAL AND METHODS 

Cattle and RFI measurement. RFI records of 5,614 animals including 842 Holstein heifer, 
2,009 beef cattle of Australia and 2,763 Canadian beef cattle were available for analysis. The  
Australian beef cattle included different breeds, 1,134 Angus, 217 Herford, 79 Murray Grey and 
579 Shorthorn) and RFI data of Canadian beef consisted of 534 Angus, 384 Charolaise and 1,845 
mixed synthetic breed (average breed compositions were formed by Angus (45.9%), Simmental 
(20.7%), Piedmontese (5%), Gelbvieh (4.2%), Charolais (2%) and Limousin (1.4%). The Holstein 
heifers were fed with cubed alfalfa ad libitum (Pryce et al. 2012) and the Angus cattle from 
Trangie Research Station were fed a pelleted diet ad libitum shortly after weaning. The other beef 
cattle used in this study were fed a feedlot diet at > 1 year of age. Residual feed intake phenotypes 
for the animals were obtained from 3 different studies (Australian dairy cattle: Pryce et al. 2012; 
Australian beef cattle: Bolormaa et al. 2013; Canadian beef cattle: Montanholi et al. 2009). 

SNP data. The SNP marker data was from Illumina HD Bovine SNP chip, with 777,963 SNPs 
for Holstein heifers or imputed from lower density SNP chips (7K, 10K and 50K) to HD  (800K) 
with BEAGLE (Browning and Browning 2009) for beef cattle. The genotypes passed quality 
control procedures including Illumina Genetrain (GC) score greater than 0.6 and rare minor allele 
frequencies higher than 0.5 % (Pryce et al. 2012). In order to construct genomic relationship 
matrix (GRM) for genomic evaluation (Yang et al., 2010), common SNPs (606,096 SNPs) in the 3 
datasets (Holstein heifers, Australian beef cattle and Canadian beef cattle) were used.  

Statistical analysis. There were two types of GRM in the analyses: 1.using all estimated 
genomic relationships between all animals in the data and 2. where genomic relationships between 
animals of different breeds were set to zero to indicate the lack of relationship between animals of 
different breeds. A pedigree relationship matrix was also added to some of the models to see 
whether adding a polygenic term improved the log likelihood. The statistical model when the fixed 
effects and all three random terms were used in the analysis was:  

 (1) y = Xb + Z1u1 + Z2u2 + a + e 

Efficiency

299



where, y is the vector of RFI records, X and Z1,2 are design matrixes relating phenotypes to their 
corresponding fixed effects and random effects, b is the vector of fixed effects including dataset 
(source of data), herd, feed management group prior to and on trial, contemporary group, cohort, 
month of birth, sex and age, u1 are SNP effects ~ N(0,I σ2

SNP), u2 are SNP effects within breed ~ 
N(0,I σ2

SNP*breed) and a are polygenic effects ~ N(0,A σ2
polygenic). In order to fit this model, an 

equivalent model was used, that is: 
(2) y = Xb + g1 + g2 + a + e 

where,  g1=Z1u1  ~ N(0, Z1Z1’σ2
SNP) , g2=Z2u2 ~ N(0, Z2Z2’σ2

SNP*breed)  Z1Z1’ is the GRM and 
Z2Z2’ is the GRM within breed, that is all relationships between animals in different breeds have 
been set to zero. To test the significance of the g1 and g2 terms, the log of likelihood of the model 
was calculated using the full model and after dropping either g1 or g2 from the model. To test the 
significance of a change in log of likelihoods, two times the difference in log of likelihoods was 
compared to Chi squared with 1 degree of freedom. To find the best GRM within breed in the 
model, some breeds were treated as part of the one “super breed” in the analysis. Murray Grey and 
Australian Angus cattle were always grouped together and treated as one breed due to the small 
number of Murray Grey animals. Conversely, the Trangie Angus animals were treated as a 
separate breed to other Angus because RFI was measured at a younger age and using different feed 
at Trangie. In order to calculate the accuracies of GEBVs in a genotyped population without 
phenotypes, 5 subsets of the main population were generated. The animals of subsets were selected 
randomly but for each validation no animals with common sires were allowed to be present in both 
validation and reference groups. The phenotypes of each validation group were removed and after 
estimating GEBVs by BLUP, the correlation between GEBVs and phenotypes adjusted for fixed 
effects in the validation population was calculated which was divided by the square root of 
estimated heritability to form the empirical accuracy of estimated breeding values in each 
validation population. 

(3) Empirical Accuracy = r GEBVs, Corrected_Phenotypes / h2 Pedigree   

The empirical accuracies were compared to theoretical accuracies calculated without a validation 
population directly from the mixed model equations. The empirical accuracies were correlations 
within breed and to be consistent the theoretical accuracies were also calculated within breed. To 
do this,  the prediction error variances for the animal effects were calculated from the mixed model 
equations in the standard way and used to predict the theoretical accuracy of GEBVs in the 
validation population.  

RESULTS AND DISCUSSION 
After fitting a model with an overall effect of the SNPs (g1) instead of the polygenic term (a), 

the log of likelihood improved significantly (P < 0.01) and adding SNP x breed (g2) further 
improved log of likelihood (P < 0.01). The results indicated that keeping the relationship between 
Holstein and Trangie Angus while setting the relationship between them and non-Trangie Angus 
and other breeds to zero (model 6) improved the log of likelihood (P < 0.01). However, model 6 
was not significantly better than model 7 in which only Trangie Angus and Holstein relationships 
were kept and the relationships between different breeds were set to zero (Table 1). One of the 
main differences of Trangie cattle compared with the other beef animals in the experiment was 
their age at RFI measurement time, it seems that the effect of age is more important than the effect 
of breed in RFI evaluation because by treating Trangie cattle and Holstein heifers as a super breed 
a better log of likelihood was achieved. Therefore, the best model was reached by applying 3 
relationship matrixes; an overall GRM, super breed GRM when keeping relationships between 
Trangie beef cattle and Holstein heifers and setting all other breed by another breed relationships 
to zero and pedigree relationship matrix.  In this model (model 9) the genetic variance was almost 
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entirely explained by the overall GRM (SNP effect) and within breed GRM (SNP x breed effect). 
The accuracies of GEBVs were also estimated with this model. The average accuracy for RFI in 5 
validations was 0.31 which was near to expected from the BLUP equations (0.34). It seems that an 
across breed reference population can be used provided the animals are measured for RFI at about 
the same age and on a similar diet. However, there is only a small increase in accuracy by adding 
animals of another breed because the relationships between animals in different breeds are all low. 
The BLUP equations correctly predict this limited increase in accuracy (about 2%). 

Table1. Application of different models to find the best fitted one (highest log of likelihood) 
 

Model Log of Likelihood σ2
SNP σ2

SNP*Breed σ2
polygenic  σ2

e h2 
1. Xb + g1 -2853.50 0.3010 - - 0.7024 0.3000 
2. Xb + g2_superbreed1 -2853.95 - 0.3280 - 0.6730 0.3277 
3. Xb + g2_superbreed2 -2850.83 - 0.3197 - 0.6832 0.3188 
4. Xb + g2_superbreed3 -2852.61 - 0.3312 - 0.6702 0.3308 
5. Xb + a -2901.49 - - 0.3023 0.7022 0.3010 
6. Xb + g1 + g2_superbreed2 -2849.18 0.1237 0.1959 - 0.6832 0.3187 
7. Xb + g1 + g2_superbreed3 -2847.93 0.1537 0.1790 - 0.6693 0.3320 
8. Xb + g1 + g2_superbreed2 + a -2848.21 0.1246 0.1697 0.0522 0.6569 0.3453 
9. Xb + g1 + g2_superbreed3 + a -2847.33 0.1523 0.1588 0.0421 0.6495 0.3522 
a=pedigree relationship matrix 
g1=(DD+TT+NT+MG+HH+SS+AA+CC+XX); g2_superbreed1=DD,TT,(NT+MG),HH,SS,AA,CC,XX 
g2_superbreed2=(DD+TT),(NT+MG+HH+SS+AA+CC+XX); 

g2_superbreed3=(DD+TT),(NT+MG),HH,SS,AA,CC,XX 
* In each model the relationships between the breeds in the same brackets were kept while relationships of the 

breed with another breed were assigned to zero. (DD=Holstein heifers; Australian beef cattle: NT=Non-
Trangie Angus, TT=Trangie Angus, MG=Murray Grey HH=Herford, SS=Shorthorn; Canadian beef cattle: 
AA=Angus, CC=Charolaise, XX= Mixed synthetic breed) 

 
CONCLUSIONS 
According to the best fitting model, it seems the SNP effects were not significantly different 
between Holstein and Trangie cattle, fed a similar diet and measured at a similar age. However, the 
SNP effects probably differed between groups fed different diets and measured at different ages. 
So, it is important to consider feed and age at measurement time in RFI evaluations.  
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